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Molding and Stretched Evolution of Optical Solitons in Cumulative Nonlinearities
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The observation of initial time dynamics of self-trapping in photorefractive media indicates that
optical spatial solitons supported by intense cumulative nonlinearities manifest temporally nonlocal
signatures in the form of stretched exponential behavior. This general result, supported also by
numerical predictions, is triggered by wave shaping in a time-constant buildup map, a consequence
of the spatially resolved inertial response intrinsic to the geometrical transition from a diffracting to a

self-focused beam, inherent to soliton appearance.
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Space-time effects appear as a general behavior when
transient and strongly inhomogeneous systems are con-
sidered, and nonlocal equations intervene. In optics, cu-
mulative/inertial processes are at once responsible for the
enhanced optical nonlinearity and the characteristically
slow time scales [1,2], features that pair, for example, the
diverse phenomenology of thermal [3], photorefractive
[4], and liquid crystal [5] self-action. Although in the
vast majority of conventional schemes, such as grating/
hologram formation and two-wave-mixing experiments,
an effective local time response is observed, i.e., the
material index of refraction evolution depends only on
the particular position considered [4], the driving cumu-
lative nonlinearity intrinsically involves a temporally
nonlocal buildup process of light induced self-action,
ie., a time evolution which depends on the previous
history of the process in different positions, through an
integrodifferential relationship [6]. In these conventional
schemes, the growth/decay process is characterized by a
single time scale exponential, a behavior that is fully
justified in the so-called small modulation depth limit
[4]. For spatial solitons [7], in turn, cumulative dynamics
play a different and more complex role, on which we
presently intend to investigate. Traces of this permeate
soliton phenomenology, from the life cycle of quasi-
steady-state photorefractive solitons [8] to the self-
trapping of incoherent and multimodal beams [2]. Here,
experiments for conditions in which the incoherent/multi-
modal self-trapping supersedes specklelike filamentation
indicate a more elaborate inertial smearing of space-
charge fluctuations, that mediate self-action, even before
an averaged response is reached [9]. Further evidence of
this can be found in the appearance of multipattern os-
cillation, quite different from a time-averaged behavior,
when the driving bias field is appropriately modulated in
time [10], and more recently in the identification of space-
time effects in modulation instability [11]. Whereas the
model of the dynamics has been in part formulated
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[12,13], the phenomenology and, hence, the physical
behavior of the transient formation stage of solitons has
remained hereto unknown. By experimentally investigat-
ing, for the first time, the initial stage of cumulative
soliton formation, we find a temporal behavior completely
different from known phenomena, characterized by
substantial discriminating observable effects (nonlocal
signatures) whenever the linear diffraction length is con-
siderably smaller than the propagation length, i.e., when
operatively a spatial soliton emerges [14]. This substan-
tiates the fact that the very nature of self-trapping in-
volves spatiotemporal nonlocality. We thus address,
through a comparative experiment, the most basic and
fundamental issue: What condition specific to soliton
formation triggers this nonlocality, and what direct gen-
eral signatures indicate its appearance? In particular, can
it be ascribed to a simple consequence of a large intensity
modulation depth, the basis for a local response in wave-
interference schemes, or does it derive from direct spa-
tiotemporal coupling, i.e., from the progressive change of
beam shape along the transverse and longitudinal axes?

In cumulative processes, the time constant is point
dependent through the intensity spatial distribution. For
an initially diffracting wave, this leads to an underlying
time-constant map that contributes to the overall beam
manifestation. Results in photorefractive crystals indicate
that this map triggers inertial signatures which are there-
fore intrinsic to the basic topological deformation asso-
ciated with solitons. Results are compatible with the idea
that the nonlocal signature comes from the superimposed
appearance of a continuum of different exponential de-
cays, resulting in a single stretched exponential behavior.
Numerical results support this thesis and show that ex-
perimental findings are incompatible with a time depen-
dent, but local, approach, in contrast to what was
previously believed [15].

Photorefractive self-action is mediated by the forma-
tion of a light driven space-charge field that changes
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beam evolution by electro-optically modifying the local
index of refraction. In the 1 + 1D band-transport model,
the (slow) time scales involved are associated with the
formation of an x-directed space charge E.(x,z, 1), in
response to an x-polarized optical field E(x, z, 1), z axis
corresponding to the beam-propagation direction. E|,
obeys the cumulative equation [4,13]

1 i E
9E. +—<1 +—>Esc 20 (1)
at T4 Ib T4

which closes the Band-transport photorefractive model
for conditions in which displacement charge, diffusion
[16], and photovoltaic effects can be neglected, i.e., in the
screening slab-soliton-supporting regime [17]. In Eq. (1),
T4 = €0€,YN,/[qus(N; — N,)I,]is the so-called dielec-
tric time constant, vy is the recombination rate, N, is the
density of acceptor impurities, N, is that of donors, g is
the electron charge, u is the electron mobility, s is the
donor impurity photoionization efficiency, I, is the
equivalent background illumination, I(x, z, f) = |A|*, A
is the slowly varying part of E, E, = V/L, V is the bias
voltage, and L is the distance between the crystal elec-
trodes along the x axis. Evidently, the cumulative Eq. (1)
reduces to the local nonlinearity (the screening soliton
saturated Kerr nonlinearity in our case) in the steady-
state regime [17], but the transient structure is character-
ized by a nonlocal relationship between E,. and I, with
A related to the index modulation An(E,.) through
the parabolic equation [d, + (i/2k)d,,]JA = (—ik/n)AnA
[4,13], k being the wave vector and n the unperturbed
sample refractive index. The strong link between solitons
and time (as opposed to space) nonlocality is evidenced
by the fact that the two basic conditions that reduce Eq. (1)
to a local dynamical evolution are incompatible with self-
trapping. The first is the small modulation linearized
limit, i.e., I < I, in which the nonlinear coupling be-
tween [ and E,, gives a negligible contribution. In con-
trast, solitons stem from large modulation (in general
I =1,) [17]. The second condition is when [ is only
weakly time and space dependent [15]. Valid for holo-
graphic/grating schemes, it is equally incompatible with
solitons which evolve from a diffracting wave I(x, z, t =
0) into a self-trapped beam I, (x) # I(x, z, t = 0) inde-
pendent of z and .

Our investigation proceeds through a series of experi-
ments carried out in a zero-cut 3.7% X 4.10) X 2.4©) mm
sample of paraelectric potassium-lithium-tantalate-
niobate (KLTN), which can support photorefractive slab
solitons through the screening nonlinearity [18], along
with diffusion-driven [19] and spontaneous [20] self-
action. The sample is photorefractive through copper
and vanadium impurities and has n = 2.2. Although in
the paraelectric phase the nonlinear response occurs
through the quadratic electro-optic effect, with electro-
optic coefficient g.; = 0.12m*C~2, findings refer to the
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entire family of photorefractive solitons, because the non-
local mechanism resides in the cumulative inertial pro-
cesses of Eq. (1). Furthermore, in the endeavor of finding
general inertial signatures in the initial transient forma-
tion segments, we encounter no fundamental distinction
between quasi-steady-state [8] and steady-state self-
trapping [17]. Our findings refer to the quasi-steady state,
thus allowing the evaluation of the role of modulation
depth, comparing soliton formation for a large range of
soliton intensity ratios u% =1,/1, (I, is the input beam
peak intensity) well beyond the region in which steady-
state solitons can be reasonably achieved [17,18].

The setup conforms to the standard 1 + 1D slab soliton
supporting scheme [17,18]. The input, approximately one-
dimensional x-polarized (parallel to the external bias E)
fundamental Gaussian beam, obtained appropriately
from a A =514nm CW Ar' laser, was focused onto
the input facet of the sample to a spot size having an
intensity at full width half maximum (FWHM) Ax;,,
determining the diffraction scale €,. Beam power at the
input crystal facet is of the order of tens of uW, depend-
ing on the particular conditions studied. Soliton propaga-
tion is obtained by fixing the physical parameters, i.e., the
background intensity I,, obtained in the conventional
manner by launching a copropagating y-polarized plane
wave [17], and, for the given crystal temperature 7 =
25 °C, stabilized through feedback Peltier circuit (corre-
sponding to €, =~8.5X 10%), the value of E, [I8].
Peculiarities of the KLTN soliton supporting scheme
can found in Ref. [18]. The temporal evolution towards
a trapped configuration of the output intensity distribu-
tion is captured in real time by imaging the output facet
of the sample onto the CCD camera, equipped with fast
electronics that provides Ax versus time. As the initially
diffracting beam molds its index pattern, the output
FWHM Ax,, passes from its freely diffracting value
Axyy(t = 0) = Axjpy/1 + (€,/€,)?, to the self-trapped
plateau value Ax,,(f > 7,) = Ax;,, where 7, is the char-
acteristic time scale (see below) [4].

The evaluation of time dynamics is susceptible to
spurious beam distortion typical of modulation and snake
instabilities [21], apart from transverse intensity inhomo-
geneities. For the given Ax;,, we have set E, such as to
obtain steady-state self-trapping for uj=1. Cor-
responding to the lowest nontransient supporting field,
it gave rise to transient undistorted self-trapping for
u% > 1.

We begin by evaluating the role played by temporal
coupling. The geometrical feature can be isolated by
comparing the self-trapping process in conditions of
weak and strong z dynamics. In Fig. 1 we show the
comparison of soliton time evolution between these two
basic regimes: the first obtained when the diffrac-
tion scale €, is comparable to the propagation distance
£, ~ €, = 2.4 mm, and the second when it is considerably
smaller.
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FIG. 1. Soliton formation for weak (a) and strong (b) z
dynamics in the collapsing stage (7, << 7). The continuous
lines are the exponential (a) and stretched exponential fit

(B =0.89) (b).

In Fig. 1(a), we show typical soliton dynamics for
€./€; = 1.16 , obtained by launching a Ax;, = 14 um
beam, for an intensity ratio u3 = (9)?, with an applied
field of Ey = 1.2 kV/cm. The results of the comparative
experiments shown in Fig. 1(b) refer to the second class of
strong z dynamics, where we have set Ax;, = 6.5 um,
leading to €./€,; = 5.4, setting again uj = (9)%, and ap-
propriately rescaling the bias field to E, = 2.5 kV/cm.

For the case of Fig. 1(a), I is only weakly dependent on
t during the transient, and we can predict from Eq. (1)
an approximate exponential evolution Axgy,(f) =
[Ax, (0) — Ax;,Je™"/™ + Ax;,, characterized by a single
time scale 7, substantiating a local time evolution.
Reflecting the cumulative process of a standard buildup,
space-charge temporal dynamics are independent of
propagation effects: The dynamics of a “slice” of crystal
at a given z do not depend on the dynamics of a previous
slice at a 7/ <z (locality). Accordingly, data analysis
indicates that an exponential decay fits the experimental
data. Conversely, this is not the case for the time evolution
curve of Fig. 1(b). Here, time behavior is fitted and
described by a stretched exponential, i.e., by a decay
that follows e~@/7)° with B <1, a qualitatively dif-
ferent time evolution that characterizes spatial soliton
formation.

In order to evaluate the validity and nature of this
phenomenological signature, we repeated the comparison
for a large range of values of u3, for both regimes, scan-
ning a variety of conditions and isolating the role of
modulation depth that depends on u(z).

Results in the strong z-dynamics regime are shown in
Fig. 2, where the values of the measured stretching ex-
ponent B3 as a function of soliton u are plotted. Again,
the most striking feature is the consistency of the signa-
ture for the entire range of soliton phenomenology (i.e.,
for €,/€¢, = 5.4), for which the best fit value is always
B < 1. In other words, the stretched exponential transient
regime is observed for all values of investigated modula-
tion depth.

In the same conditions, we repeated the comparative
experiment in the weak z-dynamics regime and obtained
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FIG. 2. Soliton time stretching vs u% (squares), compared to
the numerical prediction (diamonds).

a consistent fit with a single exponential decay (i.e.,
B = 1). The use of the full nonlinear model does not
appreciably ameliorate the fit, which in any case does not
manifest any stretching (8 = 1, i.e., the evolution is
fundamentally different from the previous case).

Apart from stretching, associated to the shaping of the
spatial soliton, Fig. 2 shows that the value of 8 depends on
the intensity modulation in the soliton regime.

Stretching has the nontrivial feature of relegating the
“distortion” to a single dimensionless parameter: We do
not expect the appearance of specific new scales and the
basic time structure which undergoes stretching should
derive from the local version of Eq. (1); i.e., the product I
is constant. We thus analyzed the observed time constants
for the cases of Fig. 2. The measured values of 1,7, are
shown in Fig. 3. Results confirm, at least for u% > 10, the
validity of the 7, = I™! law, and thus that no new time
scales appear, whereas in the low intensity regime, as
already evidenced in Fig. 2, the differentiation from the
local prediction 1,7, = 7,0,u3/(1 + uj) is accentuated
(note that, as defined above, 7, < [ . Experimental
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FIG. 3. Validity of 7, o I"! for u3 > 10. Squares (diamonds)
are the measured (predicted) values.
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uncertainty is the effect of the spatial inhomogeneities in
I, (especially along the second transverse direction, or-
thogonal to x), which for medium and large values of u}
have little impact. For u§ = 22 and I, = 3 kW/m?, 7, =
200's, and 7, =~ u37,. The value of u, was varied by
changing I, (always larger than the dark illumination),
hence, 7, varies for each measurement.

We conclude that in Eq. (1) stretching is a consequence
of the fact that, for each given z, evolution has a different
7(z) = 7,(1 + 1/1,)"", the picture complicated by the fact
that the time constants themselves evolve. Whereas we
cannot explicitly predict the outcome of the superposi-
tion, we find it fully compatible with the observed behav-
ior. Our understanding has a precise consequence: The
formation time is independent of the ratio €,/€, (i.e., the
sample or propagation length). This excludes alternative
intuitive mechanisms, consisting in the formation of a
self-trapped planar-phase wave condition that progres-
sively forms (in space and time) cascading along the
beam-propagation axis, as could occur for a thresholdlike
nonlinearity.

We have carried out a time-dependent beam-
propagation analysis, using a time step integration of
Eq. (1) and the propagation equation [22]. We find good
agreement with measured results for all regimes except
for large values of u% (Fig. 2). Equation (1) describes the
relatively general class of buildup mechanisms in which
time scales are proportional to local light intensity, a
feature which translates into universal 8 vs u} (Fig. 2)
characteristics for a given propagation equation [Eq. (1)
can be directly normalized into d,E' + (1 + u?)E' =1,
where t = t/7,, E' = E,./E,, and u*> = I/I,). The dis-
crepancy heralds the onset of system-dependent features
that break this down (though not affecting the 7, o« 1!
law). In our particular case, the impact of displacement
charge [7,17] increases at high intensity ratio, and a
first correction can be obtained by multiplying the
second term on the left-hand side of Eq. (1) by
[1 - EVESC/(NaQ)]-

Stretching, which originates from the geometrical time
map intrinsic to spatial soliton formation, implies that
during transients we are never entitled to substitute the
fully nonlocal cumulative evolution of Eq. (1) (whose ex-
plicit expression can be found in [13]), or its equivalent for
other thermal/reorientational buildup mechanisms, with
the more ambiguous, but local, expression [15] E,. =
Eyexpl—(1 + I/1,)t/7J(1 +{expl(1 + T/1,)t/7,] = 1}/
(1 +1/1,)), where I is the average intensity on a charac-
teristic (fast) time scale.

In conclusion, we have investigated, for the first time,
dynamics of spatial self-trapping when relevant propaga-
tion dynamics are present, i.e., for a regime that allows
the appearance of solitons. What emerges is a highly
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time-nonlocal evolution, characterized by stretching,
that constitutes an optical embodiment of an intrinsic
manifestation of nonlocal effects in transient and inho-
mogeneous systems.
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