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We study tunneling between regular and chaotic regions in the phase space of Hamiltonian systems.
We analytically calculate the transition rate and show that its variation depends only on corresponding
phase space area and in this sense is universal. We derive the distribution of level splittings associated
with the pairs of quasidegenerate regular eigenstates which in the general case is different from a
Cauchy distribution. We show that chaos-assisted tunneling leads to level repulsion between regular
eigenstates, solving the longstanding problem of level-spacing distribution in mixed systems.
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For example, the Cauchy distribution of level splittings [4,11,12].
Quantum-mechanical tunneling in systems whose
classical counterparts show a mixture of regular and
chaotic dynamics, has been a topic of great interest in
the past decade [1–10]. In these systems, which represent
the majority of dynamical systems found in nature, tun-
neling between regular and chaotic regions in the phase
space leads to anomalously high transition rates and often
dominates system observables, such as, e.g., atom ioniza-
tion energies [11] and optical resonance lifetimes [6]. Of
particular interest is the case of tunneling between regu-
lar regions in the phase space separated by a chaotic layer.
Contrary to the intuition based on textbook examples of
tunneling in integrable systems, the corresponding tun-
neling rate can be orders of magnitude higher than what
would be expected from direct processes [3–6,8,10].
Instead, the transition rate is determined by chaos-
assisted tunneling (CAT) which can be visualized as a
sequence of tunneling to the chaotic layer, followed by
the classical propagation until the chaotic diffusion
brings the particle to the neighborhood of the other
regular region, followed by the last ‘‘short distance tun-
neling’’ to the destination. Even though in a formal
perturbation theory CAT is a higher-order process com-
pared to direct transitions from one regular region to the
other, chaos-assisted contribution is orders of magnitude
higher [3–6,8,10] since a large part of the phase space
separating the initial and final states is traversed via a
classically allowed process.

However, all existing treatments of CAT [2– 4,11–15]
suffer from one major problem—they generally consider
the average coupling between regular and chaotic eigen-
states as a fitting parameter. The only exception to this so
far is the approach of Ref. [5], which used special proper-
ties of the scattering matrix of circular cylinder to evalu-
ate level splittings in annular billiard, and thus could not
be extended to other systems. To develop a general and
quantitative description of CAT it is therefore necessary
to address the problem of the matrix elements between
regular and chaotic eigenstates.

Also, the existing treatments of CAT often concentrate
on the systems with a discrete spatial symmetry [4,11].
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due to chaos-assisted tunneling derived in Refs. [4,11],
applies only to symmetric systems. However, as it has
been shown by Tomsovic [16], the origin of CAT-induced
doublets lies in the time-reversal symmetry and CAT
determines the doublet splitting even in the absence of
spatial symmetry.

In the current Letter we develop a theoretical de-
scription of chaos-assisted tunneling which is free from
above-mentioned limitations. Using semiclassical meth-
ods, we calculate the matrix element for coupling between
regular and chaotic states, and demonstrate that the varia-
tion of the tunneling rate only depends on the corre-
sponding phase space areas and the effective Plank’s
constant. In this sense, the transition rate due to chaos-
assisted processes is universal in all dynamical systems.
Furthermore, in the experimentally relevant parameter
range the chaos-assisted tunneling rate is not simple ex-
ponential, as it has been suggested earlier [10,12,13]. We
also study the distribution of level splittings due to chaos-
assisted tunneling and derive the general form of level
splitting distribution. We show that when no exact spatial
symmetry is present the resulting distribution is different
from Cauchy distribution due to a strong suppression of
small splittings. Finally, we address the long-standing
problem of level-spacing distribution in mixed systems
[17], and demonstrate that CAT-induced level repulsion is
responsible for deviations from celebrated Berry-Robnik
formula [18].

The Hamiltonian of a system with regular-chaotic
dynamics can be written in the following form:

ĤH �
X
R

ERj Rih Rj �
X
C

ECj Cih Cj

�
X
RC

fVRCj Rih Cj � c:c:g; (1)

where ER and  R are the energies and wave functions of
the regular states, EC;  C are the energies and wave func-
tions of chaotic states, and VRC describe the interaction
between the regular and chaotic states. Interaction matrix
elements VRC strongly fluctuate and can be adequately
described by an (uncorrelated) Gaussian distribution
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Regular objects in the phase space generally include
the remaining KAM tori and stability islands. In the
present Letter, we concentrate on the case of hard chaos
when the remaining KAM tori are few, and islands of
stability dominate the regular portion of the phase space.
The extension of our treatment to the tori will be pre-
sented elsewhere [19].

In order to calculate the variance of interaction matrix
element we consider our system to be a perturbation of a
regular system with surface of section consisting of
‘‘tile’’ of regular islands (Fig. 1, left panel). A straight-
forward semiclassical quantization [20] of the classical
motion within each of these islands yields a set of wave
functions localized at the islands �mn�q	 q; p
 where
m and n are the integers,  is the index of the island, and
�q; p
 correspond to the coordinate and momentum of
the center of the island in the surface of section (analyti-
cal expressions for �mn can be found in Ref. [20]).

Next, we introduce a nonintegrable perturbation to this
tile system such that all but the central island ( � 0) of
the tile are destroyed. The regular states which are still
localized at the surviving island, can be adequately de-
scribed by the functions �mn�q	 q0; p0
. On the other
hand, the destruction of all the other islands and the
formation of the chaotic sea (see Fig. 1, right panel)
implies that the chaotic wave functions can be represented
as a superposition of the island wave functions of  � 0
with quasirandom coefficients.

Using a technique similar to Bardeen’s tunneling
Hamiltonian formalism [21] and taking advantage of
the known analytical forms for the functions jm; n; i
and their overlaps hm; n; jm0; n0; �i, we arrive at the
following expression for the variance of the ‘‘ground
state’’ (m � 0) interaction matrix element:

V2 � hjVRCj
2i � c0 �h

2
eff

	� A
� �heff

; 2A
� �heff




	� A
� �heff

� 1; 0

; (2)

where A is the area of the regular island in the phase
space, �heff is effective (dimensionless) Plank’s constant,
	 is incomplete Gamma function [22], and c0 is a non-
universal prefactor which does not depend on �heff and can
be calculated for each particular system.
FIG. 1. Surface of section of unperturbed (regular) system
(left) and of the perturbed system with mixed regular chaotic
dynamics (right).
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If the energies of the two symmetry-related regular
states are degenerate, CAT removes this degeneracy.
CAT-induced splitting between the regular levels � can
be calculated using standard perturbation approach for
the degenerate levels [23], leading to the following
expression:

� �

��������������������������������������������������������������������������������������� X
C

jV1Cj
2 	 jV2Cj

2

ER 	 EC

!
2

�

��������
X
C

2V1CV

2C

ER 	 EC

��������
2

vuut : (3)

Note that in the perturbative description leading to
Eq. (3) the mean level splitting is characterized by a
single energy scale � � �V2=D
, where D � hjER 	 ECji
is a mean level spacing. Since (in two-dimensional sys-
tems) D / �heff [24], the typical CAT level splitting is
given by

� / �heff
	� A

� �heff
; 2A
� �heff




	� A
� �heff

� 1; 0

: (4)

As follows from Eqs. (2) and (4), the variation of the
transition rate of CAT and the corresponding level split-
tings depend only on the effective Plank’s constant �heff
and the area of the regular island in the phase space A. In
this sense, the CAT rate is universal.

To demonstrate the accuracy of our results and their
universality, we compare our theory to numerical data for
two very different physical systems: (i) a deformed cyl-
inder optical resonator, such as the one used in novel
microdisk lasers [7], and (ii) system of cold atoms trapped
by periodic laser beams [12].

First, we consider the example of the splittings of the
bow-tie wave functions in a deformed quadrupole reso-
nator, with shape described by

R��
 / 1� 0:15 cos�2�
 � �r��
; (5)

where �r corresponds to short-range roughness repre-
sented by high-order harmonics, with �r� 1.

These bow-tie wave functions supported by regular
islands in the surface of section [see Fig. 2(a)], correspond
to the lasing modes in the novel noncircular microdisk
lasers [7]. In Fig. 2(b) we plot bow-tie mode splittings vs
the wave number (which defines the effective Plank’s
constant in this system �heff � 1=kR). Note that while
the mode splittings change by more than 2 orders of
magnitude, our analytical formula (4) yields an agree-
ment with the numerical calculations with average error
of ’ 1%.

Doublets of eignestates supported by regular regions
separated in the phase space by chaotic layer, are also
formed in the system of cold atoms trapped by periodic
laser beams [12]. The corresponding eignestates are lo-
calized at two regular islands, indicated by the arrows in
Fig. 2(c). In Fig. 2(d) we plot these level splittings taken
from Ref. [12] (these data were not averaged, thus leading
to strong oscillations which are also a signature of chaos-
assisted tunneling [4]), and compare them to our result
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FIG. 3 (color). (a) Comparison between the level splitting
(normalized to the median [5]) distribution for random matrix
simulated data (red curve), Eq. (8) (green curve), and Cauchy
distribution (blue curve). (b) Comparison between the level
splitting distribution for the bow-tie orbit in quadrupole bil-
liard for kR � 50 with symmetric (pink curve) and asymmet-
ric (red curve) distortion �r, analytical prediction given by
Eq. (8) (green curve) and Cauchy distribution given by Eq. (6)
(blue curve).

FIG. 2 (color). (a) The surface of section (SOS) for the
distorted quadrupole billiard (main picture, upper half of
SOS is shown), the shape of a billiard with bow-tie orbit shown
(left inset) and the enlarged bow-tie island (right inset). The
area of the red ellipse corresponds to the area used to calculate
the analytical curve in panel (b); (b) Comparison between the
mean level splitting the bow-tie modes in distorted quadrupole
billiard (dots) and Eq. (4) (red line) (note that in optical
resonators [10] �heff � 1=kR); (c) SOS for the system of cold
atoms in periodic laser field [12]. Arrows show the position of
the symmetry-related regular states; (d) Comparison between
the CAT-splittings between symmetry-related states in the
system in (c) [12] (black lines) and our theory (red line).
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(4). Note that Eq. (4) adequately describes the appearance
of the ‘‘plateau’’ [12] for �h	1

eff > 10 (see Fig. 2(d)), which
is simply due to the fact that, as follows from Eq. (2), even
for �h	1

eff as large as 100 the dependence of the mean
splitting is not a simple exponential.

We now consider the distribution of the energy level
splittings. If the chaotic spectrum has the same symme-
try as the regular states, then the regular energy level
splitting is given by Cauchy statistics [3,4,12]

P��
 �
1����
�

p
4�

4��2 � �2 (6)

[see Fig. 3(b) and the discussion below]. In the following
calculations we suppose that the chaotic spectrum does
not possess such a symmetry.

Introducing the dimensionless interaction matrix ele-
ment, vij � Vij=V, level-spacing dC � �ER 	 EC
=D,
and the level splitting x � �=� we find that the level
splitting distribution is then given by

p��
 �
Z

� � �
Z
���	 � x
p�v1; v2;d
dv1dv2dd; (7)

where p�v1; v2;d
 is the joint probability of the interaction
matrix elements v1 � �v11; . . . ; v1N
, v2 � �v21; . . . ; v2N
,
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and the corresponding energy level spacings d �
�d1; . . . ; dN
.

The chaotic part of the mixed system in the presence of
time-reversal symmetry is well described by a Gaussian
orthogonal ensemble (GOE) of random matrices [24].
Following [4] we consider the chaotic part of the energy
spectrum to be equidistant and Vij to be Gaussian random
variables. Straightforward, though cumbersome calcula-
tions show that the following function adequately de-
scribes the distribution of the level splitting for GOE case

p��
 �
�

�2



F
�
�

�
; 1
�
�3F

�
�

�
;	

1

3

�
; (8)

F�x; q
 �
1

16�3

Z 1

0
dy

���
y

p
exp

�
	 yx2

8�2�1�q
���������
6	4y

p



�
������������
1	 y

p
�1� q

��������������
6	 4y

p


:

Note that in the limit of large splittings the obtained
distribution is consistent with the derived earlier
Cauchy behavior [4], however in the limit of small split-
ting it predicts linear behavior due to the level repulsion
in the chaotic spectrum.

To verify the accuracy of approximation used to derive
Eq. (8), we compare our distribution to a numerical
simulation where the chaotic spectrum was generated
by diagonalization of a Gaussian random matrix en-
semble. Figure 3(a) illustrates the excellent agreement
between Eq. (8) and the numerical simulations.

We also compare our theoretical results to the nu-
merical spectra corresponding to a physical system — a
cylinder with distorted quadrupolar deformation in the
cross section, described by Eq. (5). We generate the en-
semble of resonators with fixed bow-tie island structure
and different shape perturbations �r (such shape varia-
tion corresponds to the changes in chaotic modes of the
system), and compare the level splitting distribution for
the bow-tie modes to the analytical formula (8) and to
Cauchy distribution (6) for a fixed value of kR. The
symmetry of the chaotic mode spectra is governed by
263601-3



FIG. 4 (color). Comparison between the nearest neighbor
spacing distribution in the deformed elliptical microresonator
for kR ’ 75 (green), best fit Berry-Robnik distribution (blue)
and our analytical result (red); the inset shows the limit of
small spacing in more detail.
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the symmetry of the ‘‘distortion’’ �r. When the cha-
otic eigenstates possess quadrupole symmetry, the regu-
lar levels couple to the chaotic ones with the same
symmetry, leading to the Cauchy distribution of the level
splittings — see Fig. 3(b). The situation changes dramati-
cally when the resonator boundary, and therefore the
resulting chaotic spectrum are not symmetric, which is
often the case in the real systems. In this case both regular
states couple to the same chaotic state, which leads to the
strong level repulsion as shown in Fig. 3(b). Our analyti-
cal expression is consistent with the actual distribution,
although the agreement is not as good as in the case of
GOE simulations considered above. This discrepancy has
its origin in remaining ‘‘dynamically localized’’ [25] and
‘‘scarred’’ [26] states supported by the chaotic part of the
phase space of the system, whose level statistics is not
adequately described by random matrices [24].

Finally, we point out that it is this strong level repulsion
that describes the discrepancy between the nearest-
neighbor energy level-spacing distribution in the systems
with mixed regular-chaotic dynamics and the well-
known Berry-Robnik (BR) distribution [18]. We attribute
this discrepancy to the independent treatment of the
regular and chaotic portions of the spectrum in BR
approach. We propose that, in a mechanism similar to
the one described above, chaos-assisted tunneling leads to
the level repulsion between any two regular levels via an
‘‘intermediate’’ chaotic state. The resulting regular level
repulsion will lead to the vanishing probability of zero
spacings, in agreement with the actual behavior.

Using a perturbative approach along the lines of the
present Letter yields an analytical expression for the
level-spacing distribution in systems with mixed dynam-
ics. In Fig. 4 we compare this distribution (the corre-
sponding analytical expression is not shown here due to
lack of space) with the numerical calculation for the
263601-4
nearest-neighbor eigenenergy spacings in an elliptical
microresonator with short-range roughness. As clearly
seen from Fig. 4, the distribution taking into account
CAT-induced regular level repulsion, is in excellent
agreement with numerical data.
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