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Accurate Rydberg Excitations from the Local Density Approximation
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Despite the incorrect asymptotic behavior of its potential, the time-dependent local density approxi-
mation can yield accurate optical spectra. The oscillator strengths of Rydberg excitations appear in the
calculated spectrum as continuum contributions with excellent optical intensity. We explain why,
illustrate this for the neon and helium atoms, and also discuss when such calculations of the optical
response will be inaccurate.
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FIG. 1. Oscillator strengths (in inverse Hartrees) for the
2p ! ns transitions in Ne as a function of photon energy (in
Hartrees), from the exact KS potential, and from the LDA one.
is unnecessarily bleak. In fact, TDLDA yields accurate
optical spectra, even near the ionization threshold. Fig-

The discrete spectrum has been multiplied by the density-of-
states factor (see text).
Density functional theory [1,2] has seen tremendous
success in predicting ground-state properties of atoms,
molecules and solids. Time-dependent density-functional
theory (TDDFT) [3] allows application of density-
functional methods to time-dependent problems. In the
linear response regime [4,5], TDDFT predicts electronic
transition frequencies and optical spectra of these sys-
tems (see Ref. [6] for examples). In Casida’s matrix for-
mulation [5], first the self-consistent solution of the
ground-state KS equations is found. Transitions between
occupied and unoccupied KS orbitals may then be re-
garded as a first approximation to the true excitations of
the system. In a second step, these KS frequencies and
optical intensities are corrected to become the true tran-
sitions of the many-body system.

Although the local density approximation (LDA) and
generalized gradient approximation (GGA) yield useful
approximations to the total energy of an atom or mole-
cule, their corresponding ground-state KS potentials are
poor approximations [7] to the exact one. In particular,
the LDA (or GGA) potential decays exponentially at large
distances, rather than as �1=r as the exact KS potential
does. As a result, the LDA potential for an atom does not
support a Rydberg series of bound states. The first ioniza-
tion threshold in the optical spectrum is at the magnitude
of the energy of the highest occupied atomic orbital
(denoted HOMO): In an LDA or GGA calculation this
is typically too small by several eV. These approximate
potentials have excitations to the continuum at frequen-
cies where Rydberg excitations occur in the exact poten-
tial. This led many researchers to believe that excitations
into Rydberg states cannot be treated at all within LDA
(or GGA), or that the only way to do so is by asymptoti-
cally correcting the potentials [8–12]. Exact exchange
(OEP) potentials [13,14] decay correctly, but at signifi-
cant additional computational cost.

Authors usually downplay the significance of their own
results beyond the LDA threshold [15–18]. This prognosis
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ure 1 shows this for the neon atom. (Atomic units are used
throughout.) The oscillator strengths associated with ex-
act Rydberg excitations remain in the same frequency
region in LDA (even though the Rydberg states them-
selves are missing), as suggested by Zangwill and Soven
[19,20], and confirmed numerically by Zangwill [21] for
the krypton atom, where the TDLDA continuum absorp-
tion in the range 10–14 eV was found to agree with the
experimental discrete absorption within 5%. We explain
why this is true for most atomic and molecular systems.
In any calculation in which resolution of the Rydberg
states is unimportant, TDLDA yields excellent approxi-
mate oscillator strengths.

First, consider the hydrogen atom potential, V�r� �
�1=r. Now shift the potential upwards by a small amount
C, and truncate it when it reaches zero, i.e.,

Vtr�r� �
�
�1=r� C; r � 1=C;
0; r > 1=C:

(1)

Since this potential does not decay as �1=r at large
distances, it does not support a Rydberg series. Its ioniza-
tion potential is redshifted by about C. In Fig. 2, we plot
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FIG. 3 (color online). Ne atom: the top curve shows the dif-
ference between the LDA and exact XC potential. The bottom
curves show vexact

S and vLDA
S . In the valence region (shaded) the

two potentials run almost parallel.

TABLE I. Oscillator strengths for the first six discrete 2p !
ns transitions in Ne.

Transition LDA OEP Exact

2p ! 3s 2:22��2� 2:84��2� 2:70��2�
2p ! 4s 3:74��3� 4:43��3� 4:46��3�
2p ! 5s 1:32��3� 1:54��3� 1:57��3�
2p ! 6s 6:22��4� 7:15��4� 7:34��4�
2p ! 7s 3:42��4� 3:91��4� 4:03��4�
2p ! 8s 2:09��4� 2:37��4� 2:45��4�
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FIG. 2. Oscillator strengths (in inverse Hartrees) correspond-
ing to 1s ! np transitions (only shown for n 
 4) for a pure
Coulomb and the truncated-Coulomb potential given by Eq. (1)
with 1=C � 20.
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the optical intensity of both the pure and truncated
Coulomb potentials in the vicinity of the ionization
threshold, for C � 1=20 (1.35 eV). The discrete transi-
tions have optical intensity Ffi��!�!fi�, where !fi is
the transition frequency and Ffi is its oscillator strength:

Ffi �
2!fi

3

l>
2li � 1

"Z 1

0
dr�f�r�r�i�r�

#
2

: (2)

Here �i and �f are the initial and final radial orbitals, and
l> is the larger of li and lf . However, for reasons explained
below, we represent them by single lines of height n3Ffi,
where n is the radial quantum number of the
final state. The similarity between the two curves is
striking, both above the exact threshold and between
the two ionization thresholds. As long as 1=C is not too
close to the nucleus, this behavior is observed for any
value of C.

The phenomenon is well known in atomic physics [22].
The two potentials differ only by a constant, except at
large r (>1=C). Their ground-state orbitals are virtually
identical. The Rydberg states of the pure Coulombic po-
tential are also almost identical to the continuum states of
the shifted potential with the same transition frequency,
unless they accidentally fall very close to the shifted
potential’s threshold. Thus the h�fjrj�ii are about equal,
except that states in the continuum are energy normal-
ized. This produces a density of states factor, �dE=dn��1,
where n is the final state index. In the case of a pure �1=r
potential, this is simply n3. Once this is accounted for, the
optical response of the truncated potential is very close to
that of the long-ranged potential.

Why is this phenomenon relevant to a TDLDA optical
spectrum? Long ago, it was understood that the primary
difference between LDA (or GGA) potentials and the
exact KS potential is due to a lack of derivative disconti-
nuity in the LDA potential [23]. This leads to the LDA XC
potential differing from the exact XC potential by
(nearly) a constant in the valence region: about �I � A�=
2 where I is the ionization potential and A the electron
affinity. Taking I � 0:8 and A � 0 yields a shift of 0.4 as
shown in Fig. 3. The variation of the difference with r is
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much smaller than that of the potentials in the valence
region of the Ne atom.

To plot the Rydberg series of an exact KS potential, we
write Enl � ��n��nl�

�2=2, where �nl is the quantum
defect, typically a very smooth function of n, and rapidly
approaching a finite value as n ! 1. To interpolate the n
dependence of �, we used the same self-consistent inter-
polation of Al-Sharif et al. [24]. In practice, �dE=dn��1

differs negligibly from �n��nl�
3 [22].

In Fig. 1, we plot the KS optical response spectrum for
the Ne atom, for both the LDA and exact potentials. The
LDA potential was obtained through a fully numerical
self-consistent calculation [25]. The high quality of the
LDA spectrum is already apparent in the bare KS spec-
trum (in the case of the Ne atom, the TDDFT corrections
are small [26]); this is also true for the 2s-nd transitions
(not shown). The LDA threshold is 0.3 (8 eV) below the
exact threshold. Above the LDA threshold, the LDA os-
cillator strength is accurate to within 20% for all bound
transitions. Table I shows this explicitly by extracting
these from the height of the LDA curve at the exact
transition frequencies. These LDA states are not reso-
nances, but simple continuum states. From the table we
see that LDA is accurate, even if not as accurate as OEP
(the error from the latter is largely due to lack of corre-
lation in the HOMO [27]). Thus, while not yielding an
263001-2
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FIG. 4. Ne atom: LDA continuum state at energy E � 0:2853,
and exact energy-normalized 8s bound orbital, along with the
LDA and exact 2p orbitals.
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FIG. 5. The threshold of the truncated spectrum passes
through the 1s ! 3p discrete transition of the pure Coulomb
potential as r0 goes from 18 to 16.
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FIG. 6. He atom: The top panel shows the bare exact KS
and LDA spectra, and the lower panel shows the TDDFT
corrected spectra, LDA/ALDA results are from [29] but un-
shifted; the exact calculations are from [30], multiplied by the
density of states factor (see text), and the experimental results
are from [31]
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approximation to the eigenvalues, accurate oscillator
strengths are available from LDA (or GGA) if the exact
transition frequencies are known.

The accuracy of the LDA spectrum is not a conse-
quence of the Thomas-Reiche-Kuhn sum rule [22], which
states that the total oscillator strength integrated over all
frequencies gives a constant proportional to the number of
electrons (we verified the satisfaction of this sum rule in
all our calculations). After all, any one-body potential
satisfies this. Rather, it is the detailed shape of the LDA
KS potential that is important. LDA densities are close to
exact densities, implying that occupied orbitals are quite
accurate. In particular, the LDA HOMO (2p in this case),
out of which we are computing the transitions, is almost
identical to the exact HOMO (Fig. 4). This fact alone
implies accurate behavior for the high-frequency limit
of the optical spectrum. To see this, evaluate the dipole
matrix element assuming the final state is a simple plane
wave, as it will be when its energy is very high. One finds
that

Z 1

0
dr�Esr�2p ���!

E!1
��3=25=4�Z�00

2p�r � 0�E�11=4=
����
�

p
;

(3)

where Z is the nuclear charge. Thus an accurate HOMO
near the nucleus yields accurate high-frequency be-
havior. Even at frequencies only slightly below the exact
threshold, the final states are similar in regions that are
significant for the optical response, and their different
asymptotic behavior is irrelevant, as shown in Fig. 4.

We now discuss where the LDA response will not be
accurate, namely, in the immediate vicinity of the LDA
threshold. At this threshold, the LDA response incor-
rectly vanishes according to Wigner-threshold behavior
[28]. How far above this value must one be to trust the
accuracy of the LDA spectrum? To see this, we again
truncate the Coulomb potential of Fig. 2 (where the
truncation point was chosen appropriately for comparison
purposes) but now choose a range of truncation values,
r0 � 20 ! 10, so that the threshold of the truncated
spectrum, Itr, passes through a discrete transition of the
exact potential. Figure 5 shows that, as a discrete tran-
sition is absorbed into the continuum, its oscillator
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strength is at first a sharp peak centered on Itr. When Itr
is well below the discrete transition, this peak has settled
to an accurate envelope for that transition. Thus one can
trust the truncated oscillator strength for all discrete
transitions absorbed in the continuum except possibly
the lowest. Only very close (within one transition on
either side) to Itr is the truncated spectrum inaccurate.
In the case of Ne in Fig. 1, there is a barely bound
transition (energy �2:3 mH) in the LDA spectrum, whose
oscillator strength has been partially absorbed by the
continuum.

Finally, Fig. 6 shows both the bare KS response and the
TDDFT corrected response of the He atom; the latter
both exactly (from experiment and accurate quantum
chemical calculations) and within TDLDA. These are
the results of Stener et al. [29], but we do not shift the
LDA spectrum to correct for the threshold error: we
compare oscillator strengths at the same frequency, not
energy. The TDDFT corrections are small, and overcor-
rect the bare LDA results, but clearly are consistent with
our observations for the bare spectra.
263001-3
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Often the excited state energy is of primary interest,
especially to quantum chemists focused on molecular
spectroscopy. However, for many other properties, the
integrated response is relevant. The dispersion forces
between separated molecules are determined by the
(imaginary) frequency integral of the dynamic polariz-
abilities of the individual species. Our results imply that
even LDA should be an excellent approximation, as was
found in Ref. [32], and more recently in Ref. [33] for finite
distances.

Moreover, it can happen that a bound ! bound transi-
tion is shifted into the continuum by TDLDA, but if it
remains strongly peaked, our analysis shows that the
transition frequency and photoabsorption intensity for
this transition can be trusted, even though the transition
is now bound ! free. The � ! �� transition in benzene
is an example of this [18].

We thank Walter Kohn for helpful discussions, Cyrus
Umrigar for the exact ground-state density and XC po-
tential of the neon and helium atoms, and the authors of
[29] for their numerical results. This work was supported
by the Petroleum Research Fund and by NSF Grant
No. CHE-9875091.
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