
P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2003VOLUME 91, NUMBER 26
Spin Symmetry in the Antinucleon Spectrum
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We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons
in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon
spectra. We find a very well developed spin symmetry in single antineutron and single antiproton
spectra. The dominant components of the wave functions of the spin doublet are almost identical. This
spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same
origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed
than the pseudospin symmetry in normal nuclear single particle spectra.

DOI: 10.1103/PhysRevLett.91.262501 PACS numbers: 21.10.Hw, 21.10.Pc, 21.30.Fe, 21.60.Jz
plore configurations with antiparticles and their interac-
tion with nuclei. The possibility of producing a new kind

Charge conjugation of Eq. (2) gives the Dirac spinor for
an antinucleon,
Symmetries in the single particle spectra of atomic
nuclei have been extensively discussed in the literature
as, e.g., violation of spin symmetry by the spin-orbit term
or approximate pseudospin symmetry in nuclear single
particle spectra. Atomic nuclei are characterized by a
very large spin-orbit splitting; i.e., pairs of single particle
states with opposite spin (j � l� 1

2 ) have very different
energies. This fact has allowed the understanding of
magic numbers in nuclei and forms the basis of nuclear
shell structure. More than 30 years ago [1,2] pseudospin
quantum numbers were introduced by ~ll � l� 1 and ~jj � j
for j � l� 1

2 , and it has been observed that the splitting
between pseudospin doublets in nuclear single particle
spectra is by an order of magnitude smaller than the
normal spin-orbit splitting.

After the observation that relativistic mean field mod-
els yield spectra with nearly degenerate pseudospin-orbit
partners [3], Ginocchio showed clearly that the origin of
pseudospin symmetry in nuclei is given by a relativistic
symmetry in the Dirac Hamiltonian ([4,5] and references
therein). He found that pseudospin symmetry becomes
exact in the limiting case, where the strong scalar and
vector potentials have the same size but opposite sign.
However, this condition is never fulfilled exactly in real
nuclei, because in this limit the average nuclear potential
vanishes and nuclei are no longer bound. It has been found
that the quality of pseudospin symmetry is related to the
competition between the centrifugal barrier and the pseu-
dospin orbital potential [6].

In relativistic investigations a Dirac Hamiltonian is
used. In its spectrum one finds single particle levels
with positive energies as well as those with negative
energies. The latter are interpreted as antiparticles under
charge conjugation. This has led to many efforts to ex-
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of nuclear system by putting one or more antibaryons
inside ordinary nuclei has recently gained renewed inter-
est [7]. For future studies of antiparticles in nuclei it is
therefore of great importance to investigate the symme-
tries of such configurations.

In a relativistic description nuclei are characterized by
two strong potentials, an attactive scalar field �S�r� and a
repulsive vector field V�r� in the Dirac equation which for
nucleons (labeled by a subscript ‘‘N’’) reads

f� � p� VN�r� � �	M� SN�r�
g N�r; s� � �N N�r; s�;
(1)

where VN�r� � V�r� and SN�r� � S�r�. For a spherical
system, the Dirac spinor  N has the form

 N�r; s� �
1

r

�
iGn��r�Yljm��;�; s�

�F~nn��r�Y
~ll
jm��;�; s�

�
; j � l�

1

2
; (2)

where Yljm��;�� are the spin spherical harmonics.
Gn��r�=r and F~nn��r�=r form the radial wave functions
for the upper and lower components with n and ~nn radial
nodes. � � h1� � � li � ��1�j�l�1=2�j� 1=2� character-
izes the spin-orbit operator and the quantum numbers l
and j. ~ll � l� sign��� is the orbital angular momentum of
the lower component. It is therefore well accepted that the
pseudospin quantum numbers of a particle state with
positive energy are nothing but the quantum numbers of
the lower component [4,5].

Charge conjugation leaves the scalar potential SN�r�
invariant while it changes the sign of the vector potential
VN�r�. That is, for antinucleons (labeled by ‘‘A’’),
VA�r� � �VN�r� � �V�r� and SA�r� � SN�r� � S�r�.
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 A�r; s� �
1

r
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�F~nn ~���r�Y
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jm��;�; s�

iGn~���r�Y
l
jm��;�; s�

�
; j � l�

1

2
; (3)

with ~�� � ��.
We are interested only in positive energy states of the

Dirac equations. Therefore normal quantum numbers fol-
low the upper component which is dominant. A particle
state is labeled by fnl�mg, while its pseudoquantum
TABLE I. Relation between symmetry and external fields.

Particle Antiparticle

dV�=dr � 0 Spin symmetry Pseudospin symmetry
dV�=dr � 0 Pseudospin symmetry Spin symmetry
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numbers are f~nn ~ll ~��mg. Following Ref. [8], ~nn � n� 1 for
� > 0; ~nn � n for � < 0. An antiparticle state is labeled by
f~nn ~ll ~��mg, and its pseudoquantum numbers are fnl�mg. In
analogy to Ref. [8], we deduce the relation

n � ~nn� 1; for ~�� > 0; n � ~nn; for ~�� < 0: (4)

With ��1� �� � ~ll�~ll� 1� and ��1� �� � l�l� 1� in
mind, one derives Schrödinger-like equations for the
upper and the lower components
�

�
1

2M�

�
d2

dr2
�

1

2M�

dV�

dr
d
dr

�
l�l� 1�

r2

�
�

1

4M2
�

�
r
dV�

dr
�M� V�

�
G�r� �

�
��NG�r�;
��AG�r�;

(5)

�
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1

2M�

�
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1

2M�

dV�

dr
d
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4M2
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�
��NF�r�;
��AF�r�:

(6)
where V��r� � V�r� � S�r� and M� � M���� �
M� �� V� with � � ��N (for particle states) or ��A
(for antiparticle states). Both equations are fully equiva-
lent to the exact Dirac equation with the full spectrum of
particle and antiparticle states.

We give the relation between spin or pseudospin sym-
metry and the external fields in Table I. If dV�=dr � 0,
we have exact spin symmetry in the particle spectrum
and exact pseudospin symmetry in the antiparticle spec-
trum because states with the same l (but different �) are
degenerate in Eq. (5). l is the orbital angular momentum
of particle states and pseudo-orbital angular momentum
of antiparticle states. When dV�=dr � 0, the symmetries
are broken. But if dV�=dr is so small that the spin-orbit
term (the term ��) in Eq. (5) is much smaller than the
centrifugal term, there will be approximate symmetries.

Similarly, when dV�=dr � 0 in Eq. (6), there is an
exact pseudospin symmetry in the particle spectra [4,5].
On the other hand, if we focus on antiparticle states, we
have in this case exact spin symmetry because now ~ll is the
orbital angular momentum. If dV�=dr � 0 but small, we
have approximate pseudospin symmetry in particle spec-
tra and approximate spin symmetry in antiparticle
spectra. This implies that the spin symmetry in the anti-
particle spectrum has the same origin as the pseudospin
symmetry in particle spectrum as realized in Ref. [5].
However, there is an essential difference in the degree to
which the symmetry is broken in both cases: the factor
1=M2

� � 1=�M� �� V��
2 is much smaller for antinu-

cleon states than that for nucleon states. The bound
antiparticle energies �A are in the region between M�
V��0� & �A & M. For realistic nuclei roughly we there-
fore have 0:3 GeV & �A & 1 GeV. On the other hand, the
bound particle states are in the region of M� jV��0�j &

�N & M, i.e., for realistic nuclei close to 1 GeV. We there-
fore have jM���A�j > 2jM� S�0�j and jM���N�j<
jV��0�j. Thus the factor in front of the ~�� term is for
antiparticle states by more than a factor �2jM� S�0�j=
jV��0�j�

2 � 400 smaller than for particle states. Spin
symmetry for antiparticle states is therefore much less
broken than pseudospin symmetry for particle states.

Since the spin-orbit term in Eq. (6) is so small for
antinucleon states, we expect, in addition, that the radial
wave functions of the spin doublets are nearly identical;
i.e., the dominant components of spin partners for anti-
particle solutions are much more similar than the small
components of pseudospin partners for particles.

Although the present discussion is meant for single
particle spectra in atomic nuclei, the idea is very general.
It has first been discovered that the equality of the vector
and scalar potentials results in spin symmetry in
Refs. [9,10] where the authors suggested applications to
meson spectra. However, this symmetry was only re-
cently found to be valid for mesons with one heavy quark
[11]. In the present Letter, we illustrate for the first time in
realistic nuclei nearly exact spin symmetry in the single
particle spectra for antinucleons. We use for that purpose
nonlinear relativistic mean field (RMF) theory [12]
with modern parameter set NL3. Relativistic Hartree
calculations are carried out in coordinate space for
the doubly magic nuclei 16O and 208Pb. With VN�r� and
SN�r� replaced by VA�r� and SA�r�, respectively, and
 N�r; s� replaced by  A�r; s�, Eq. (1) is solved for the
antinucleon states by the same way it is solved for the
nucleon states.

For 16O, pseudospin symmetry cannot be studied suc-
cessfully because there are only a few bound nucleon
states. However, as seen in Fig. 1, there are many more
antiparticle states. We find excellent spin symmetry for
them. Since there are too many levels in antiparticle
spectra of 208Pb (around 400 for either antineutrons or
antiprotons), we will not give a similar figure in this case.
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FIG. 1. Antineutron potential and spectrum of 16O. For each
pair of the spin doublets, the left level is with ~�� < 0 and the
right one with ~�� > 0. The inset gives neutron potential M�
V��r� and spectrum.

TABLE II. Energies (in MeV) of some pseudospin doublets in
neutron spectrum of 208Pb.

�n� 1�s1=2 nd3=2 �E �n� 1�p3=2 nf5=2 �E
895.046 898.152 �3:106 904.603 908.520 �3:917
920.168 920.914 �0:746 929.995 930.709 �0:714
938.878 938.455 0.423 �n� 1�f7=2 nh9=2 �E

�n� 1�d5=2 ng7=2 �E 925.638 927.984 �2:346
914.962 918.517 �3:555 �n� 1�g9=2 ni11=2 �E
938.484 938.292 0.192 936.078 936.572 �0:494

P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2003VOLUME 91, NUMBER 26
In Fig. 2 we present the spin-orbit splitting in antineu-
tron spectra of 16O and 208Pb. For 16O, the spin-orbit
splittings are around 0.2–0.5 MeV for p states (l � 1).
With increasing particle number A the spin symmetry in
the antiparticle spectra becomes even more exact. For
208Pb, the spin-orbit splittings are �0:1 MeV for p states
and less than 0.2 MeVeven for h states (l � 5) as seen in
the lower panel of Fig. 2. We show in Table II the pseu-
dospin orbit splitting of the neutron spectrum of 208Pb to
compare them with the spin-orbit splitting in antinucleon
spectra. In most cases, the pseudospin orbit splittings for
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FIG. 2 (color online). Spin-orbit splitting �A�nll�1=2� �
�A�nll�1=2� in antineutron spectra of 16O and 208Pb versus the
average energy of a pair of spin doublets. The vertical dashed
line shows the continuum limit.
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particles are larger than 0.4 MeV, and for deeply bound
states, it can reach even values around 4 MeV.

In general, the spin-orbit splitting decreases with the
state approaching the continuum limit. But for very
deeply bound antineutron p, d, f, and g states in 208Pb,
the spin-orbit splitting is smaller. This might be due to the
competition between the centrifugal barrier and the spin-
orbit potential in Eq. (6). In order to investigate this in
more detail, we calculated the expectation value of the
spin-orbit potential,

SOP � �
Z
drF�r�2

1

4M2
����

~��
r
dV�

dr
: (7)

Since the upper amplitudes of the two spin doublets are
nearly equal to each other (cf. Figs. 4 and 5 below), we
expect the difference, �SOP, gives the main part of �� of
a pair of spin doublets. In Fig. 3 we present �SOP as a
function of the average energy for spin doublets in 208Pb.
The variational trend of �SOP is roughly in agreement
with that of ��. Particularly, for deeply bound states,
�SOP� ��.

Wave functions of pseudospin doublets in single nu-
cleon spectra have been studied extensively in the litera-
ture [5]. The lower amplitudes of pseudospin doublets are
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FIG. 3 (color online). Difference of the integration of the
spin-orbit potential �SOP versus the average energy for spin
doublets in 208Pb. The vertical dashed line shows the contin-
uum limit.
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FIG. 4 (color online). Radial wave functions of some spin
doublets in the antineutron spectrum of 16O.
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FIG. 5 (color online). Radial wave functions of some spin
doublets in the antineutron spectrum of 208Pb.
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found to be close to each other. Since the spin symmetry
in the antinucleon spectrum is much more exact than the
pseudospin symmetry in the single nucleon spectrum, we
expect that the upper amplitudes of the spin doublets
coincide with each other even more.

In Figs. 4 and 5, we show radial wave functions F�r�
and G�r� for several antinucleon spin doublets in 16O and
208Pb. The dominant components F�r� are nearly exactly
identical for the two spin partners. On the other hand, the
small components G�r� of the two spin partners show
dramatic deviations from each other. The relation between
the node numbers of the upper and lower amplitudes
given in Eq. (4) is seen in Figs. 4 and 5.

We mention that polarization effects caused by the
antinucleon are not taken into account in our calculations.
They change both the vector and the scalar potentials [7],
thus making the spin symmetry a bit worse. However,
these effects are never taken into account in discussions
of spin and pseudospin symmetries, and we did not in-
clude the imaginary part of the optical potential of the
antinucleons. The annihilation probability of the antinu-
cleon in the nucleus is, of course, very large and makes it
very difficult to observe the small spin-orbit splitting of
the antinucleon levels experimentally.

In summary, we discussed the relation between the
(pseudo)spin symmetry in single (anti)particle states
and the external fields where the (anti)particle moves.
We present the single antinucleon spectra in atomic nuclei
as examples and find an almost exact spin symmetry. The
origin of the spin symmetry in antinucleon spectra and
the pseudospin symmetry in nucleon spectra have the
same origin, but the former is much more conserved in
262501-4
real nuclei. We performed RMF calculations for some
doubly magic nuclei. Even in a very light nucleus, 16O,
the spin symmetry in the antinucleon spectrum is very
good. An investigation of wave functions shows that the
dominant components of the Dirac spinor of the antinu-
cleon spin doublets are almost identical.
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