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A general relation between the group delay and the dwell time is derived for quantum tunneling. It is
shown that the group delay is equal to the dwell time plus a self-interference delay. The Hartman effect
in quantum tunneling is explained on the basis of saturation of the integrated probability density (or

number of particles) under the barrier.
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How long does it take a particle to tunnel through a
potential barrier? This is a question that has occupied
physicists for decades [1] and one for which there is still
no definitive answer [2]. Indeed the influential review by
Hauge and Stgvneng lists at least seven different tunnel-
ing time definitions of which two, the so-called phase
time (group delay) and dwell time, are considered well
established [3]. These times remain controversial, how-
ever, because in the opaque barrier limit they predict
effective tunneling velocities that exceed the vacuum
speed of light and may even become unlimited (the
“Hartman effect”) [4]. Furthermore, it is not clear how
these two time definitions, equal in the classical limit, are
related under quantum tunneling conditions where any
connection between them has been explicitly denied [5].
In recent papers we have argued that these delay times are
not propagation delays and should not be linked to a
velocity [6-9]. In particular, we have shown that the
phase time is proportional to the time averaged stored
energy and is a measure of a cavity lifetime. This pro-
portionality between the phase time and the stored energy
was used to explain the paradox of the Hartman effect [6]
for the specific case of tunneling electromagnetic waves.
While the electromagnetic case is analogous to quantum
mechanical particle tunneling [10], there are enough dif-
ferences between the two to warrant a separate exami-
nation of the problem of quantum tunneling in its own
right. Other than the fact that the Maxwell equations
for tunneling photons are Lorentz invariant while the
Schrodinger equation for tunneling electrons is not, the
two systems also satisfy different dispersion relations.
This should affect both qualitatively and quantitatively
the detailed nature of the interference process that results
in barrier tunneling.

In this Letter we derive a general and explicit relation
between the group delay and the dwell time for quantum
tunneling, thus unifying these two approaches to a tun-
neling time. We show that the group delay is equal to the
dwell time plus a self-interference delay which depends
on the dispersion outside the barrier. We then show that
the Hartman effect for tunneling quantum particles can
be explained by the saturation of the integrated probabil-
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ity density (or number of particles) under the barrier,
which itself is proportional to the group delay. Our results
further confirm that there is nothing superluminal in
quantum tunneling.

The one-dimensional tunneling configuration consid-
ered here is shown in Fig. 1. In the stationary state
description a particle of energy £ and momentum /k is
incident from the left upon a real potential barrier V(x)
that occupies the region 0 < x < L. The energy and mo-
mentum are related through E = /i%k?/2m, where m is the
mass of the particle. Whereas a classical particle is totally
reflected by this potential barrier when E <V, quantum
mechanically there is a finite, albeit small, probability
that the particle will tunnel through the barrier and end
up in the region x > L. The probability of this event is
measured by the magnitude squared of the barrier trans-
mission coefficient T = |T'|e'%:. Figure 2 shows the trans-
mission probability for the case of a rectangular potential
barrier V(x) = V. The particle is much more likely to be
reflected, with a probability given by the magnitude
squared of the reflection coefficient R = |R|e’# . In 1931
Condon first posed the question of the alacrity of the
tunneling process [11]. A year later MacColl asserted,
based on a wave packet solution of the Schrodinger equa-
tion, that there is ‘“‘no appreciable delay” in the trans-
mission of the packet through the barrier [1]. Hartman
later showed that there is a finite delay but that this delay
is shorter than the equal time, the time a particle of equal
energy would take to traverse the same distance L in the
absence of the barrier [4]. The group delay measures the
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FIG. 1. Schematic of the barrier tunneling problem.
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FIG. 2. Transmission of a rectangular potential barrier of
height V,, versus energy E/V,,. Here \2mV,L/i = yL = 3.

delay between the appearance of a wave packet peak at
z = 0 and its appearance at z = L. It is calculated by the
method of stationary phase and is given by the energy
derivative of the transmission phase shift [12,13]:

7o = hidg/dE, (1)

where ¢q = ¢, + kL. This is actually the group delay in
transmission. The group delay in reflection is given by

7o = hdd,/dE, )

a quantity that differs from the transmission group delay
except for symmetric barriers, where 7,, = 7,, = 7,. For
a general asymmetric barrier, it is useful to define a
bidirectional group delay as the weighted sum of trans-
mission and reflection group delays:

= |T|27gt + |R|27-gr' (3)

The dwell time is a measure of the time spent by a
particle in the barrier region 0 <x <L regardless of
whether it is ultimately transmitted or reflected. It is
given by [5,14]

_ 5l PRdx

jin ,

where (x) is the stationary state wave function corre-

sponding to energy E and j;, = hik/m is the flux of

incident particles. We derive a simple and explicit relation

between these times and use this relation to explain the
origin of the Hartman effect.

We begin with a variational theorem that yields the
sensitivity of the wave function to variations in energy.
Following Smith [14], we write the time-independent
Schrodinger equations for ¢* and d¢/dE and obtain,
after some elementary manipulations,

R 9 <81,// oyt

‘pw_%ﬂ 0E 0x

)

_¢*

Y S

OEdx )

| Upon integration over the length of the barrier we find
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In front of the barrier (x = 0), the wave function consists of an incident and a reflected component:

U = e + Re™ R, @)
Behind the barrier (x = L), there is only a transmitted wave

b = Te'*. 3
By using Egs. (7) and (8) we evaluate the left-hand side of Eq. (6) as

d|T dR
—lzk[m ATl g 4IRI ' Ly i<|T|2

Equating this to the right-hand side in (6), we obtain the |

bidirectional group delay

_ JEPdx Im(R), ok

jin k (")E,
where we have used the fact that for a lossless barrier
|R|? + |T|> = 1. If the barrier is also symmetric, then the
bidirectional group delay is the same as the group delay in
reflection or in transmission: 7, = T, = T,.

Equation (9) is a simple and general result that unifies
two of the major tunneling times and agrees with the
wave packet analysis of Hauge et al. [15]. The first term in
Eq. (9) is the aforementioned dwell time. The second term
is a self-interference term that comes from the overlap of
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incident and reflected waves in front of the barrier. As the
wave packet tunnels through the barrier, part of the
incident packet interferes with a portion that has already
been reflected [3,15]. This term is of great importance at
low energy (E — 0) when the particle spends most of its
time dwelling in front of the barrier, interfering with
itself, held up in a standing wave, neither coming nor
going, its purpose to and fro. Although the role of self-
interference in the tunneling process has been recog-
nized, until now the belief had been that its contribution
to the group delay could not be disentangled [3,16]. Here
we have succeeded in disentangling the role of self-
interference and can thus write
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Te=Tg+ T, (10)

where 7; = —hIm(R)d Ink/dE. In quantum tunneling, the
approach to the barrier itself involves dispersive propa-
gation and this has an effect on the self-interference
process. This was not the case for the tunneling of electro-
magnetic waves in the photonic band gap structure
studied in [6,7] where the approach to the barrier was
characterized by nondispersive plane wave propagation.
In that case the self-interference delay vanished and the
dwell time was shown to equal the group delay.

The self-interference delay can also be written as
Im(R)/kv, where v = fik/m is the velocity of the incident
particle. In this form we can recognize a connection
between this result and the optical theorem for three-
dimensional scattering: o = 47 Imf(0)/k, where o is
the total scattering cross section and f(0) is the forward
scattering amplitude [17]. Both terms arise from interfer-
ence between incident and scattered waves and lead to a
diminution of the forward flux. For the one-dimensional
case, the optical theorem can be expressed as o =
2Imf(0)/k [18]. The backscattering cross section is deter-
mined by the imaginary part of the reflection coefficient
and the quantity L, = Im(R)/k is equivalent to a scatter-
ing length. When divided by the incident velocity, this
yields a time delay for traversing the scattering length.

The imaginary part of the reflection coefficient, and
hence the self-interference delay, can also be related to
the Lagrangian for the Schrodinger equation. Consider
the function

W=y"Vy 1D

whose imaginary part is proportional to the particle
momentum. From the Schrédinger equations for ¢ and
" we find that

ReV - (Vi) = [Vyl2 + %(V “ PR (12)

For the one-dimensional tunneling problem an integra-
tion of Eq. (12) over the barrier region amounts to evalu-
ating W at x = 0 and x = L with the use of the wave
functions (6) and (7). This calculation yields

2
TN EEs
m h)o L2m | dx

The integral in Eq. (13) is seen as the Lagrangian for the

wave function . The time-independent Schrodinger

equation is the Euler-Lagrange equation that results
from requiring that the integral in (13) be stationary
with respect to path variations that satisfy the boundary
conditions. The imaginary part of the barrier reflection
coefficient can thus be seen as the result of a stationary
action principle. Indeed, for matter waves stationary
phase and stationary action are equivalent.

Equation (9) relating the group delay to the dwell time
and a self-interference delay is a general relation that

+(V— E)ll/l|2:|dx. (13)
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holds for any lossless potential. We thus have two com-
pletely different methods to calculate the group delay:
(i) by calculating the frequency derivative of the trans-
mission phase shift and (ii) by calculating the inte-
grated probability density and the Lagrangian. To test
this result, we apply it to the textbook problem of a
rectangular barrier in which V(x) = V,, a constant in
the region between O and L. In this case the transmission
phase shift is

¢, = —tan"!(A tanhkL), (14)
where « = 2m(Vy — E)/li and A = (x/k — k/x)/2.

The wave function in the barrier region is
= Ce ™ + De*, (15)

where C = (1 — ik/k)e*t/2g, D = (1 + ik/k)e <L /2g,
and g = coshkL + iA sinhkL. With the use of this wave
function Egs. (9) and (13) yield

2 2 2
mL cos” ¢ [(1 + k>tanhKL — <k2 — 1>sech2KL}
K

T 2

K2 KL
(16)
mL cos> ¢, k2 \tanhx L
_mE 4 , 17
Ti ﬁk2<k2>KL a7
T, = Ty + 7;
_ mLcos’p [(E N 5>2tanhKL
hk 2 k k kL
k2
- <—2 - 1>sech2KL}. (18)
K

It is readily confirmed that the energy derivative of the
transmission phase shift ¢ results in the same expres-
sion for the phase time as Eq. (18). It is gratifying that
the phase time calculated by two such different methods
yields the same result. Figure 3 shows these three times
plotted as a function of the normalized energy. For
E < V,, there is a significant difference between the phase
time and the dwell time because of the self-interference
delay. In the classical region, however, these two times
become equal.

The Hartman effect is the saturation of the group delay
with barrier length. The fact that this time saturates with
length indicates that it cannot be a propagation delay and
should therefore not be associated with a traversal veloc-
ity. In the limit L — oo, the probability density inside the
barrier is simply the decaying exponential |[i/]|*> ~
exp(—2kx). From (9) it is seen that both the dwell time
and the self-interference delay are proportional to the
integrated probability density in this exponential limit.
This integrated probability density saturates with barrier
length and hence the dwell time, self-interference delay,
and phase time all saturate. As L — oo, we find
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FIG. 3. Dwell time (dashed line), self-interference delay
(dotted line), and phase time (solid line) versus normalized
energy E/V, for a particle in a rectangular potential barrier.
Here 2mVyL/h = yL = 37. The times are normalized by
79 = L/vy, where vy = iy/m.

2 (E) 2 <VO—E>
Tg = —\—= ) T, — — i
4 kv \V, " okv\ YV,

2
=Td+Ti=E.

(19)
Tg
The times indicated above can be cast in the form of an
uncertainty principle by recognizing that 2/kv = &/
VE(Vy — E). It is important to note that the delays seen
here are not propagation delays and, therefore, their satu-
ration does not imply superluminal and unlimited veloci-
ties. In numerical simulations based on the relativistic
Klein-Gordon equation, we have shown that the peak of a
tunneling wave packet does not even enter the barrier
[7,8]. Similar studies with the Dirac equation also show an
absence of a wave packet peak in the barrier during
tunneling [19]. Thus the peak of the tunneling wave
packet does not propagate from input to output. Output
and input wave packet peaks are therefore not related by
causal propagation and hence the phase time is not a
propagation delay. It is a delay associated with the mo-
mentary capture and release of a tunneling particle. There
is a constant tunneling flux j;,|7|?> that arises from the
interference between evanescent and antievanescent
modes within the barrier. If one divides the integrated
particle density in the barrier by this flux, the result is a
perfectly “luminal” net-flux delay 7y = 7,/|T|* which
does not saturate with barrier length [20].

Tunneling without distortion is a narrow band phe-
nomenon requiring wave packets that are narrow in mo-
mentum space. The uncertainty principle then demands
that the spatial extent of the packet be much greater than
the barrier width. As a result, the duration of the tunnel-
ing event will simply be the temporal extent of the wave
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packet, assumed propagating at its initial velocity. The
shift in the peak of this very broad (in space) wave packet
is merely an indication of a scattering phase shift pro-
portional to the integrated probability density under the
barrier. Equation (9) also suggests a method for mea-
suring quantities such as the dwell time and the net-
flux delay. The group delay can be determined from
measurements of scattering phase shifts in transmission
or reflection as a function of incident energy. The self-
interference delay is obtained from a measurement of the
scattering probability and phase shift. A simple subtrac-
tion then yields the dwell time. The net-flux delay is then
obtained by dividing this dwell time by the transmission
coefficient.

In conclusion, we have obtained a general relation
between the group delay and the dwell time thus resolving
the paradox of the Hartman effect in quantum tunneling,
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