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Effective Interactions Cannot Replace Solvent Effects in a Lattice Model of Proteins
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Protein folding and protein design are among the most challenging problems of the past ten years in
biophysics and molecular biology. For a given protein, it is possible to extract, from existing protein
databases, a set of specific (i.e., belonging to the investigated protein) effective amino-acid (AA)
interactions able to stabilize the native state. On the other hand, attempts to find global effective AA
interactions, which would be able to stabilize all proteins at once, failed. Using a simple lattice model
where the solvent degrees of freedom are (semi)explicitly taken into account, we show that the absence
of global effective AA interactions is due to the solvent and that on this lattice model the solvent effects
cannot be reproduced by amino-acid effective interactions.

DOI: 10.1103/PhysRevLett.91.258102 PACS numbers: 87.15.Aa, 87.14.Ee, 87.15.Cc
interactions when working on real proteins. of these two states depend on whether the hydrogen bond
Protein folding has become one of the most challeng-
ing problems of the past ten years, involving biology,
chemistry, medicine, and physics. It is believed that the
3D structure of a protein is completely encoded in its
amino-acid (AA) sequence: this is the fundamental
dogma in protein science [1], and protein folding research
aims at discovering the right key able to decode the AA
sequences. Not less important, for example, for drug
engineering, is protein design: the prediction of the resi-
due sequences fSg that admit as their native state a pre-
defined 3D conformation �. In principle, these problems
could be tackled using all-atoms molecular dynamics, but
this method has been successful only for small proteins
[2]. Therefore, people have introduced models that re-
duce the complexity of the system to a manageable level.
One usual strategy is to determine effective AA/AA
contact interactions for coarse-grained models of pro-
teins. These contact interactions can be encoded in 20�
20 matrices (there are 20 naturally occurring residues)
[3], and the native state corresponds to the minimum
of a given cost function depending on them [4]. To deter-
mine these interactions several techniques have been
developed, such as the PERCEPTRON algorithm [5], where
a simple neural network tries to learn contact interac-
tions from a given training set of sequences and structures
(as, for example, from the Protein Data Bank) [6].
However, even if this technique has turned out to be
one of the most promising methods, the computed effec-
tive interactions are able to stabilize only small sets of
proteins [7]: it is not possible to determine global effec-
tive interactions that stabilize all proteins at once.
Actually, in the worst case, a simple pairwise energy
function may not stabilize even a single protein such as
crambin, as shown in a recent work [6]. In this Letter, we
use two simple lattice models, one with implicit and the
other with explicit solvent: we show that in the latter the
solvent effects cannot be replaced by any effective AA/
AA interactions and we propose that this could be the
main reason why it is not possible to find global effective
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The driving force of the folding of globular proteins is
the hydrophobic effect [8]. Hydrophobic residues, such as
leucine or valine, try to hide their surfaces from the
solvent, creating a hydrophobic core surrounded by polar
residues. A simple model taking into account this prop-
erty is the HP model [9–11], where the AA alphabet is
reduced to only two species: hydrophobic (H) and polar
(P). The hydrophobic effect is captured by an attractive
interaction between hydrophobic residues, and the �ij
values of the 2� 2 interaction matrix are therefore
chosen so that �HH < �HP�� �PH� < �PP. The set of pos-
sible conformations is also reduced, describing proteins
as self-avoiding walks (SAWs) on a d-dimensional lattice.
The energy of a given sequence S mounted on a confor-
mation � becomes:

H�S;�� �
X
i<j

�nn
pipj

�nn�~rri; ~rrj�; (1)

where �nn
pipj

are the interaction potentials described above

(pi � H; P) and �nn� ~rri; ~rrj� is a contact matrix defined as:

�nn�~rri; ~rrj� �

�
1 if i; j are nearest neighbors,
0 otherwise:

(2)

This model has been thoroughly investigated and, despite
the strong simplifications, it has provided many results in
agreement with the properties of real proteins, such as the
presence of a hydrophobic core in the native state of
proteins at low temperature and the occurrence of heat
denaturation. To check the effects of an explicit solvent
we use the HPW (HP � water) model [12]: as in the HP
model, proteins are described as SAWs on a lattice and
are made of H and P residues. The difference resides in the
addition of the solvent: sites not occupied by an AA are
occupied by groups of water molecules. The water behav-
ior is described by the Muller-Lee-Graziano (MLG)
model [13]. In this water model, as in real water, hydro-
gen bonds between molecules can be either formed or
broken. The typical energies (Eij) and degeneracies (qij)
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is close to a hydrophobic molecule or in the water bulk.
Water molecules close to a hydrophobic AA try to build
icelike cages, formed by strong hydrogen bonds, whereas
in the bulk, they are able to form hydrogen bond net-
works. Such a double bimodal description of water is
represented pictorially in Fig. 1. Both experiments and
simulations suggest that Eds > Edb > Eob > Eos as from
Fig. 1 and that qds > qdb > qob > qos (subscripts: d �
disordered, o � ordered; b � bulk, s � shell; shell sites
are those in contact with H AA) [13]. The energy of a
protein of L AA, with the sequence S � p1; p2; . . . ; pL
(pi � H; P) is then:

E �
X
hi;Hi


Eos
~��i;os � Eds�1� ~��i;os��

�
X
�j;H�


Eob
~��j;ob � Edb�1� ~��j;ob��; (3)

where the first sum is over the water sites that are nearest
neighbors (nn) of at least one H AA and the second is over
all the bulk sites; ~��i;os � 1 if the shell site i is in one of the
qos ordered states, 0 otherwise, and analogously ~��i;ob for
the bulk sites. The energy leads to the partition function
of the system: Z�S� �

P
�Z�S;��, where Z�S;�� is the

partition function associated to a single conformation �

Z�S;�� � �qobe��Eob � qdbe��Edb�nb����qose��Eos

� qdse
��Eds�ns���;

(4)

where ns��� is the number of water sites nn of H residues
and nb��� the number of bulk water sites.

To determine the native state of a sequence, we need to
introduce a cost function X�S;�i� so that �n will be the
native conformation of a given sequence S, if

X�S;�n� < X�S;�� 8� � �n: (5)

This condition is crucial, but not trivially satisfied, since
the conformation with the lowest cost is often degenerate.
To avoid this degeneracy we need to create a set fSigL of
‘‘good’’ sequences: those with a unique native state. Using
the partial free energy
E    , qob ob

dbE    , qdb

E    , qds ds

E    , qos os
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FIG. 1. The MLG water model. Bimodal energy distribu-
tions for bulk and shell water molecules. The lower levels
represent ordered groups of water molecules; the higher levels
disordered ones.
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X�S;�i� � �kBT ln
Z�S;�i�=Z�S�� (6)

as cost function, we find fSigL by exact and exhaustive
enumeration: all possible sequences of length L have to
be mounted on all conformations and the ML sequences
that satisfy (5) are retained (e.g., M16 � 2431) [12,14].
The features of these sequences were thoroughly inves-
tigated and some typical behaviors of real proteins were
reproduced: for instance, the presence of a hydrophobic
core in the native state and the occurrence of both cold
and warm denaturations. It is worth stressing that cold
denaturation is not reproduced by most Hamiltonians
used in protein folding, despite the experimental evidence
of this phenomenon on real proteins [15].

The goal is now to find effective AA/AA interactions
able to recover the original native states. The general
form of a pairwise contact nn Hamiltonian is given by
(1). Introducing the notation

�1 � �HH; �2 � �HP � �PH; �3 � �PP; (7)

we can rewrite (1), for a sequence S on a conforma-
tion �, as:

H�S;�� �
X3
i�1

�iCi�S;��; (8)

where Ci�S;�� is the number of nn contacts of type i. If
the �i‘s values are correct, the native conformation �n
will have the lowest Hamiltonian value:

H�S;�� � H�S;�n� > 0 8� � �n: (9)

Using (8), inequalities (9) can be rewritten as:

X3
i�1

�iCi�S;�� �
X3
i�1

�iCi�S;�n� � ~�� � ~CC��S;�;�n� > 0

8� � �n; (10)

where we introduced the quantity C�
i �S;�;�n� �

Ci�S;�� � Ci�S;�n�: the difference of the number of con-
tacts of kind i between conformation � and �n. Finally,
since the interaction potentials should not depend on the
chosen sequence, (10) becomes:

~�� � ~CC�
S;�;�n�S�� > 0 8S � 1; . . . ; ML

8� � �n�S�: (11)

In these inequalities, the vector ~CC�
S;�;�n�S�� depends
only on the topology (AA positions) of the conformations
� and �n, whereas the vector ~�� contains the residue
interaction values. If a vector ~�� exists satisfying all in-
equalities (11), it can be found by PERCEPTRON learning.
Starting from a trial vector ~��t all scalar products from
inequalities (11) are computed and the vector ~CC�

l with the
lowest value of ~��t � ~CC� is identified. The trial vector is
then updated: ~��t�1 � ~��t � " ~CC�

l (usually " � 1), the in-
equalities are reevaluated with the new vector ~��t�1, and
258102-2



FIG. 2. Probability distribution of the sizes of learnable
groups. For each run, the PERCEPTRON finds a set of values
satisfying a maximal number of x sequences, represented in
[%] of the total on the x axis. On the y axis the probability
distribution, computed on 1000 runs, is shown.
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the cycle is repeated [16]. If a solution exists, i.e., a vector
~��c exists satisfying all inequalities (11), the vector ~��t
converges toward ~��c and the value ~CC�

l � ~��t becomes posi-
tive in a finite number of steps [5]; otherwise, the algo-
rithm runs forever. The absence of a solution implies that
the parametrization of the Hamiltonian is wrong.

First, we apply the method to the standard HP model in
2D, investigating sequences of length L � 16. Protein
design on this model gives us the database with the native
states �n�Si� and the excited conformations ��Si� (hence-
forth called decoys). Since, for a given sequence, the
excited states are degenerate, we randomly choose, for
each sequence in fSig16, only 15 decoys from the first three
states (5 decoys per state). Restricting the choice on the
three first states is reasonable since competition takes
place mainly between the native state and similar con-
formations, i.e., those in the first few excited states. The
vectors ~CC� in (11) are easily computed using the contact
matrix (2) and starting from a random vector ~��t we iterate
the learning process. As expected the perceptron recovers
the correct interaction values (i.e., �perc

ij � �ij with i; j �
H; P): if the original interactions that stabilize the native
state are only AA/AA interactions, the learning algo-
rithm is able to find them.

To apply the method to the HPW model we use differ-
ent kinds of Hamiltonians, since we do not know, a
priori, what kind of contacts would be able to replace
the solvent effects. Keeping the same structure of (1), we
introduce a new energy function:

H�S;�� �
X
i<j

�nn
pipj

�nn� ~rri; ~rrj� �
X
i<j

�nnn
pipj

�nnn�~rri; ~rrj�

�
X

i<j<k

�3B
pipjpk

�3B� ~rri; ~rrj; ~rrk�; (12)

with the contact matrices:

�nn� ~rri; ~rrj� �

�
1 if i; j are nn;

0 otherwise
;

�nnn� ~rri; ~rrj� �

�
1 if i; j are nnn;

0 otherwise
;

�3B�~rri; ~rrj; ~rrk� �

�
1 if i; j; k are 2nn and 1nnn;

0 otherwise
;

(13)

where nnn � next nearest neighbors. In this work we use
three different Hamiltonians: nn contacts (fixing �nnn

ij �

�3B
ijk � 0), nn � nnn contacts (�3B

ijk � 0) and many-body
(nn � nnn � 3B) contacts. As for the HP model we deal
with sequences of length L � 16: for each sequence in
fSig16, we take 15 decoys, randomly chosen from the first
three excited states and we compute the vectors ~CC� [17].
Then we investigate the learnability of specific interac-
tion values for small sets of sequences fSgi � fSg. First,
we apply the learning algorithm to two randomly chosen
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sequences. Then, at every new step, if a vector ~��c exists
satisfying (11), we add a new sequence and we reapply the
algorithm. For each run i, if the algorithm does not find a
solution in a predefined number of steps N, we retain the
size of the group fSgi and the related vector ~��i

c. Figure 2
shows the distribution of the sizes of these groups, com-
puted on 1000 runs. For each run i, the size of the group
fSgi is represented on the x axis in 
%� of the whole set of
good sequences (M16 � 2431) and the distribution of
these values is shown on the y axis. As expected, the
number of learnable sequences increases if the number of
involved interactions increases, too. The number of pa-
rameters in the Hamiltonian is too small if we use only
nn contacts. Indeed, many sequences have at least one
excited conformation possessing exactly the same num-
ber of contacts as its native state: the latter cannot be
recognized as native among the other conformations.
This degeneracy is partially avoided by introducing nnn
contacts, and three-body interactions allow a more accu-
rate tuning between the different potentials: the result
becomes more robust and the typical size of a learnable
set increases. Still, it is much smaller than M16. The value
of the different interactions for the many-body case are
shown in Fig. 3. The peaks of the nn and the nnn values
satisfy the inequalities �HH < �HP < �PP as expected
from the energy definition of the solvent. Figures 2 and
3 show that the method divides the global set of sequences
in small subsets: every subset has its own specific poten-
tial values. It is nevertheless important to stress that the
algorithm stops because it has not found a solution in N
steps, not because the problem has proven to be unlearn-
able. Therefore, we also apply a modified algorithm,
which was first introduced in Ref. [18] and applied to
the crambin problem [6]. This algorithm proves unlearn-
ability monitoring a despair parameter d: if this parame-
ter d exceeds a critical value dc after a finite number of
steps, the problem is unlearnable. First, we apply this
algorithm using the whole set of sequences for the
258102-3



FIG. 3. Probability distribution of the potentials values. (The
HHH, HHP, and HPP 3B interactions are peaked at the zero
value and for clarity omitted in the picture.)
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many-body case. As expected, the result is in agreement
with what happens for real proteins: the problem is rig-
orously unlearnable. Instead, when looking at the small
sets fSgi, we find that roughly 20% of them are indeed
unlearnable, whereas the remaining 80% correspond to
the worst case of convergence for the theorem [18], and
unlearnability, if any, could be proven only in N � 1030

steps. Yet, since we know that the whole set is unlearnable,
we look at upper bounds for the sizes of the sets fSgi: to
each of them we add sequences until unlearnability is
rigorous. We find that just a few extra sequences are
enough and the peak of the histogram in Fig. 2 moves
to about 5%.

We further investigate the excited states given by the
effective Hamiltonian (12) in the many-body case. Since
the common picture of the energy landscape of proteins is
that the native state lies at the bottom of a funnel, and
folding proceeds along its walls, scrambling the energies
of the excited states can affect dramatically the dynam-
ics. Therefore, we recompute, for different sequences Si,
the energies of the conformations in the three first excited
states [according to the explicit solvent Hamiltonian (6)],
using the effective Hamiltonian (12). For all sequences
the initial hierarchy of the excited states imposed by (6)
changes if we use (12): for two different conformations
�i and �j, the inequality relating the two energies is
EHPW��i� < EHPW��j� using (6), but it may be reversed
using (12), so that Eeff��i� > Eeff��j�. This energy scram-
bling may result in a change of the intermediate states, as
well as of the folding pathway.

In conclusion, we used a common method to extract
interactions potentials on real proteins: the PERCEPTRON

method. We applied this algorithm to a simple model
where the solvent is explicitly taken into account, show-
ing that the solvent effects cannot be reproduced by
effective residue interactions. It turns out that proteins
are divided into groups: for each group we find interac-
tions values able to recognize the correct native state of
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the sequences inside this group. Yet it is not possible to
determine global values, meaning that the solvent effects
are more complex than simple AA/AA interactions.
Moreover, the energy landscapes determined by the new
effective Hamiltonians are different from the ones of the
solvent dependent Hamiltonian. As a consequence, the
dynamical folding process may change, too. These two
main results may explain why it is not possible to deter-
mine global AA/AA interactions for real proteins and
suggest that, even for restricted protein sets, some care
should be taken when using effective potentials for dy-
namical studies.
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