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We present an efficient method for preparing the initial state required by the eigenvalue approxi-
mation quantum algorithm of Abrams and Lloyd. Our method can be applied when solving continuous
Hermitian eigenproblems, e.g., the Schrödinger equation, on a discrete grid. We start with a classically
obtained eigenvector for a problem discretized on a coarse grid, and we efficiently construct, quantum
mechanically, an approximation of the same eigenvector on a fine grid. We use this approximation as the
initial state for the eigenvalue estimation algorithm, and show the relationship between its success
probability and the size of the coarse grid.
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register in an equal superposition, using b Hadamard
gates, transforms this state into

’u can be represented exactly with b bits (i.e., 2b’u is an
integer), Eq. (5) simplifies to
Intuitively, quantum mechanical problems offer great
potential for quantum computers to achieve large speed-
ups over classical machines. An important problem
of this kind is the approximation of an eigenvalue of
a quantum mechanical evolution operator. In a recent
paper [1], Abrams and Lloyd present a quantum algo-
rithm for doing this. Their algorithm is exponentially
faster than the best classical algorithm, but requires a
good approximation of an eigenvector as input. In this
Letter, we show how to obtain an approximation effi-
ciently which is guaranteed to be good.

The key component of the algorithm in [1] is quan-
tum phase estimation, which is a method for approximat-
ing an eigenvalue of a unitary matrix [2]. We give a brief
outline of this algorithm below.

Let Q denote a 2m � 2m unitary matrix. We want to
approximate a specific eigenvalue of Q. Phase estimation
does this using the corresponding eigenvector as input.
The algorithm in [1] deals with the case when this eigen-
vector is not known exactly. In particular, consider a
quantum computer consisting of three registers with a
total of b�m� w qubits. The first b qubits are all
initially in the state j0i. The second register withm qubits
is initialized to some state j i, which must approximate
the eigenvector in question sufficiently well, as we will
see. The last w qubits are work qubits for temporary
storage.

Since Q is unitary and therefore normal, the state j i
can be expanded with respect to eigenvectors of Q.
Omitting the work qubits, the initial state of the algo-
rithm is

j0ij i � j0i
X
u

dujui; (1)

where jui are the eigenvectors of Q. Placing the first
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2b

p
X2b�1

j�0

jji
X
u

dujui: (2)

Next, powers of Q are applied to create the state

1�����
2b

p
X2b�1

j�0

jjiQj
X
u

dujui: (3)

Since Q is unitary, its eigenvalues can be written as
e2�i’u , where ’u 2 R. We can assume that ’u 2 	0; 1

and consider the approximation of one of these phases
instead of the approximation of one of the eigenvalues.
Equation (3) is equal to

1�����
2b

p
X
u

X2b�1

j�0

due2�ij’u jjijui: (4)

It is easily seen that the inverse Fourier transform per-
formed on the first register creates the state

X
u

du

 X2b�1

j�0

g�’u; j
jji

!
jui; (5)

where

g�’u; j
 �

(
sin	��2b’u�j
�e�i�’u�j2

�b 
�2b�1


2b sin	��’u�j2�b
�
; 2b’u � j

1; 2b’u � j:
(6)

A measurement of the first register produces outcome j
with probability

pj �
X
u

jduj
2jg�’u; j
j

2; (7)

and the second register will collapse to the stateX
u

dug�’u; j
�����pjp jui: (8)

We remark that, for the special case when the eigenvalues
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X

u

duj’uijui: (9)

Thus, when the eigenvalues are of this form, and are
distinct, a measurement of the first register will cause
the second register to collapse exactly onto the corre-
sponding eigenvector.

Recall that we are interested in approximating the
phase that corresponds to an eigenvector ju0i, that the
state j i is an approximation of this eigenvector, and
that the eigenvalue is of the form e2�i’u0 . For instance,
one is often interested in the eigenvalue corresponding to
the ground state. We define ��’0; ’1
 � minx2Zfjx�
’1 � ’0jg, ’0; ’1 2 R (i.e., the fractional part of the
distance between ’0 and ’1). Then a measurement
of the first register produces an outcome from the set
G � fj : ��j=2b; ’u0 
 � k=2b; k > 1g with probability

Pr�G
 �
X
j2G

X
u

jdug�’u; j
j2 �
X
j2G

jdu0g�’u0 ; j
j2

� jdu0 j2 �
jdu0 j

2

2�k� 1

; (10)

and when k � 1 the probability that ��j=2b; ’u0 
 � 2�b is
bounded from below by �8=�2
jdu0 j

2, where the proofs of
the probability bounds can be found in [2,3]. Observe that
j i must be chosen in a way that this probability is greater
than 1

2 , which implies that jdu0 j has to be sufficiently large.
If we want to obtain an approximation of ’u0 with accu-
racy 2�n and probability at least jdu0 j2�1� �
, Eq. (10)
shows that this can achieved by choosing the number of
qubits b in the first register to be

b � n�
�
log

�
1�

1

2�

�	
: (11)

The algorithm in [1] is based on the fact that quantum
phase estimation can be used as an efficient subroutine to
find eigenvalues. Consider a Hermitian operator H. The
operator G�t
 � e�iHt is unitary and has the same eigen-
vectors as H. We assume that G can be implemented
efficiently and, therefore, can be used as the unitary
operator in the phase estimation algorithm. For example,
when H is local, i.e., it can be written in the form

P
Hj,

where eachHj acts only on a small number of qubits, then
G can be implemented efficiently as shown in [4] (for
more details, see [1] and the references therein). How-
ever, locality is not a necessary condition for efficient
implementation. Indeed, Zalka [5] shows that G can be
efficiently implemented for a many-particle quantum
mechanical system with a nonlocal H. Nielsen and
Chuang [2], on page 210, also state that it is possible to
implement G for a wide class of nonlocal Hamiltonians,
and give an example of one such Hamiltonian.

The Hermitian eigenproblem described above is solved
on a discrete grid. We are interested in the case when the
grid is extremely fine. Clearly, a fine grid requires a large
257902-2
vector for the representation of the initial state of the
algorithm. In general, it may not be possible to efficiently
prepare an arbitrary quantum state in a space with a large
number of qubits. However, in our case we will show a
method for the efficient preparation of an initial state.

Suppose we have an eigenvector for a coarse grid dis-
cretization of the problem. We can assume that we ob-
tained it classically because the size of the problem is
small. Using this eigenvector, we efficiently construct an
approximation to the corresponding eigenvector for a fine
grid discretization of the problem. We use this approxi-
mation as the initial state of the eigenvalue approximation
algorithm.We describe our method for a one-dimensional
continuous problem on the interval 	0; 1�.

Let H be a positive Hermitian operator, defined on a
Hilbert space of smooth functions on 	0; 1�. Let vk��
, k �
1; 2; . . . denote the eigenfunctions ofH, ordered according
to the magnitude of the corresponding eigenvalues; with-
out loss of generality, we assume thatZ 1

0
jvk�x
j2 dx � 1: (12)

Suppose that HN is a discretization of H with grid size
hN � 1=�1� N
. Let jU�N


k i, k � 0; 1; . . . ; N � 1 denote
the normalized eigenvectors of HN , ordered according to
the magnitude of the corresponding eigenvalues. The
expansion of the kth eigenvector in the computational
basis can be written as

jU�N

k i �

XN�1

j�0

u�N
k;j jji: (13)

Let jV�N

k i �

P
N�1
j�0 vk	�j� 1
hN�jji be the sampled ver-

sion of vk��
 at the discretization points. Consider prob-
lems such that the eigenvector of interest satisfies
kv0kk1 � sup0�x�1jv

0
k�x
j � O�1
 and�����jU�N


k i �
jV�N


k i

jV�N

k i

����� � O�hqN
; (14)

where q > 0 is the order of convergence and kjXik2 �PN�1
j�0 jxjj2, for jXi �

Pj�N�1
j�0 xjjji. For example, these

conditions are satisfied when we are dealing with second
order elliptic operators; see [6] for the solution of eigen-
value problems.

Now, assume that the eigenvector jU�N0

k i of HN0

has
been obtained classically [7]. This vector is placed in a
logN0 qubit register. For N � 2sN0, we construct an
approximation j ~UU�N


k i of jU�N

k i by appending s qubits, in

the state j0i, to jU�N0

k i, and then performing a Hadamard

transformation on each one of these s qubits; i.e.,

j ~UU�N

k i � jU�N0


k i

�
j0i � j1i���

2
p

�
�s
�

1�����
2s

p
XN�1

j�0

u�N0

k;f�j
jji; (15)

where f�j
 � bj=2sc. The effect of f is to replicate the
257902-2
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coordinates of jU�N0

k i 2s times. We use j ~UU�N


k i as input to
the eigenvalue and eigenvector approximation algorithm.
When the result of the algorithm is measured, j ~UU�N


k i will
collapse onto a superposition of eigenvectors according to
Eq. (8). We show that the magnitude of the coefficient of
jU�N


k i in this superposition can be made arbitrarily close
to 1 by appropriately choosing N0.

Consider two different expansions of j ~UU�N

k i:

j ~UU�N

k i �

XN�1

j�0

~uu�N
k;j jji; (16)

j ~UU�N

k i �

XN�1

l�0

d�N
k;l jU
�N

l i: (17)

The first expansion is in the computational basis and the
second is with respect to the eigenvectors of HN. We call
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jd�N
k;k j
2 the probability of success. Equation (17) can be

rewritten as

j ~UU�N

k i � jU�N


k i � �d�N
k;k � 1
jU�N

k i �

X
l�k

d�N
k;l jU
�N

l i: (18)

Taking norms on both sides and using (13) and (16) gives
the inequality

kjU�N

k i � j ~UU�N


k ik2 �
XN�1

j�0

ju�N
k;j � ~uu�N
k;j j
2

� jd�N
k;k � 1j2 �
X
l�k

jd�N
k;l j
2 �

X
l�k

jd�N
k;l j
2

� 1� jd�N
k;k j
2: (19)

We will now bound (19) from above, and thus the
probability of failure. The definition of j ~UU�N


k i implies
kjU�N

k i � j ~UU�N


k ik2 �
XN�1

j�0

vk	�j� 1
hN�

kjV�N

k ik

�
vkf	f�j
 � 1�hN0

g�����
2s

p
kjV�N0


k ik
���N


k;j �
��N0

k;f�j
�����
2s

p

2
; (20)

where
P
N�1
j�0 j��N


k;j j
2 � O�h2qN 
 and

P
N�1
j�0 j��N0


k;f�j
j
2 � 2sO�h2qN0


 by (14). Applying the triangle inequality, we get

kjU�N

k i � j ~UU�N


k ik �

 XN�1

j�0

vk	�j� 1
hN�

kjV�N

k ik

�
vkf	f�j
 � 1�hN0

g�����
2s

p
kjV�N0


k ik

2
!
1=2

�O�hqN0

: (21)
The definition of jV�N

k i and the fact that kv0kk1 � O�1


imply that kjV�N

k ik �

����
N

p
	1�O�hN
�. Hence, the sum

above is equal to

1

N

XN�1

j�0

jvk	�j� 1
hN�	1�O�hN
�

� vkf	f�j
 � 1�hN0
g	1�O�hN0


�j2: (22)

Since vk��
 is continuous with a bounded first derivative,
we have that

vk�x2;j
 � vk�x1;j
 �O�jx2;j � x1;jj
; (23)

where x1;j � �j� 1
hN and x2;j � 	f�j
 � 1�hN0
, j �

0; . . . ; N � 1. Clearly jx2;j � x1;jj � O�hN0

. Using (22),

(23), and the triangle inequality, we obtain from (21) that

kjU�N

k i � j ~UU�N


k ik � O�hN0


kjV�N


k ik����
N

p �O�hN0

 �O�hqN0




� O�hminf1;qg
N0


: (24)

Hence, the probability of failure is bounded from above
by O�N�minf2;2qg

0 
. It depends only on the order of con-
vergence to the continuous problem and the number of
points in the classically solved small problem. We can
select anN0 such that the probability of failure is less than
1=2, no matter how much larger N is. By choosing a large
N, we can make the discretization error arbitrarily small.
Equation (24) implies that the probability of obtaining
the eigenvalue e2�i’k with accuracy 2�b is at least
�8=�2
	1�O�N�minf2;2qg

0 
�.
We remark that any classical numerical algorithm

that computes an eigenvalue, satisfying a specific (non-
trivial) property, of a N � N unitary matrix takes time
��N
. For example, one may want to find the eigenvalue
that corresponds to the ground state. This is true even if a
matrix is sparse and regardless of whether the algorithm
is deterministic or randomized. It is merely a consequence
of the fact that the algorithm needs to consider all the
(nonzero) elements of the matrix, and there are at least
��N
 of them. Alternatively, in the restricted case when
the matrix is diagonal, finding one of its elements is a
problem at least as hard as searching an unordered list.
The lower bound for searching yields the lower bound in
our case.

In conclusion, our method provides a highly efficient
preparation of initial states for eigenvalue approximation,
requiring only a small number of Hadamard gates. Thus,
the algorithm of Abrams and Lloyd, using our initial
state, computes the eigenvalue exponentially faster than
any classical algorithm. The method can be generalized to
higher dimensional continuous problems. This will be the
subject of a future paper.
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