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Thermodynamics and Phase Diagram of High Temperature Superconductors
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Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into
account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of
the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase
correlations are important up to temperature T�. Above T�, the pseudogap region is determined only by
amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with
specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field
temperature T0 has a similar doping dependence as the pseudogap temperature T�, whereas the
pseudogap energy scale is given by the average amplitude above Tc.
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hump seen in specific heat experiments [1], the depression
of the spin susceptibility [8], and the persistence of the
pseudogap for T < T�.
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One of the most intriguing problems in high tempera-
ture superconductivity is the presence of a region above
the critical temperature Tc and below a temperature T�

where observable quantities deviate from Fermi liquid
behavior. This region is called the pseudogap region
[1,2] because it contains effects similar to superconduc-
tivity such as a partial suppression of electronic density
of states.

The origin of such a pseudogap above Tc is unclear.
There are four major approaches concerning its theoreti-
cal understanding: the first is based on the formation of
incoherent Cooper pairs above Tc. Phase order [3] or Bose
condensation [4] would then establish superconductivity
at Tc. The second assumes that the pseudogap is induced
by antiferromagnetic fluctuations [5]. The third approach
is based on spin-charge separation where spins bind to-
gether to form spin singlets and the energy needed to split
them apart leads to the formation of a ‘‘spin gap’’ [6]. The
fourth assumes the existence of a quantum critical point
[7] but the latter has never been observed. However, these
approaches seem to be unable to describe specific heat and
magnetic susceptibility.

The main aim of this Letter is to show that various
experimental observations can indeed be interpreted
in terms of fluctuations of the pairing field  � j jei�

and that two temperature regions have to be distinguished
(see Fig. 5): for a relatively small temperature interval
Tc < T < T� the phase of  is still uncorrelated in space
over some correlation length � (the Kosterlitz-Thouless
correlation length in 2D). Thus, in this regime, observ-
ables are governed by correlated phase fluctuations de-
scribed by the XY model. For T� < T < T�, phases of  
are essentially uncorrelated (� is on the order of the
lattice constant), but j j is still fluctuating and nonzero,
signaling local pair fluctuations. This explains the wide
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Our method has a major difference with respect to the
Emery and Kivelson phase fluctuations scenario [3] of the
pseudogap regime: we show that phase fluctuations influ-
ence the pseudogap only up to a temperature T�, which is
much smaller than T�. Above T�, observables are thus
determined only by the amplitude of the pairing field.

The picture of two different regimes above Tc is also
supported by other experiments: (a) Demsar et al. [9],
interpreting the real-time measurements of the quasipar-
ticle relaxation dynamics, find a temperature interval of
only a few K in which pair fluctuations associated with
their collective phase are important, whereas the pseudo-
gap persists to much higher temperatures. (b) Hall effect
measurements [10] in underdoped GdBa2Cu3O7�x show
a characteristic temperature T0 between Tc and T�, at
which the temperature dependence of cot��H� deviates
from T2 and the Hall coefficient has a peak. A possible
explanation consists in considering vortex excitations as
scattering centers modifying the Hall angle �H and Hall
coefficient, which would again suggest identifying T0

with our T�, below which correlated vortices exist.
We base our calculations on a d-wave attractive

Hubbard model
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with a hopping t between nearest neighbor sites i and j on
a square lattice. The interaction favors the formation of
onsite d-wave pairs sinceQy
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1; ��1� for i being the nearest neighbor site of j in the
horizontal (vertical) direction. Qy
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is the singlet pair operator of neighboring sites. De-
coupling the interaction with the help of a Stratonovich-
Hubbard transformation, the partition function Z �
Tre��H is then
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FIG. 1 (color online). Average amplitude hj ~  ji (thick line)
and the corresponding standard deviation �hj ~  j2i � hj ~  ji2�1=2

(long-dashed line) from 2D GL simulations. Parameters are
V0 � 95 K, T0 � 260 K. Dashed curves: amplitude distribution
P�j ~  j� (histogram) for T � 300 K (right) and T � 30 K (left).
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where  �  �i; �� � j �i; ��jei��i;��, and Hn is the non-
interacting part. The trace over the fermionic operators
can be evaluated, yielding
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Here G is a Nambu matrix of one-electron Green func-
tions for fermions interacting with a given space and time
dependent pairing field  �i; ��.

Expanding (2) in powers of ~rr , Z can be written as a
functional integral involving an action S� � for a field  
that changes slowly in space and that can be taken time
independent:

S� � �
Z
ddr�S0�j j� � S1� ~rr ��; (3)

where S0 is a local function of j �r�j, and S1 � cj ~rr j2=2
where c is a constant. d is the dimension.

Now we compute observables such as energy, specific
heat, and spin susceptibility. Our main strategy is to treat
separately amplitude and phase fluctuations. In this spirit,
two different approaches are possible: (i) The amplitude
is fixed and determined by a suitable variational equation.
(ii) The energy is expanded around the average amplitude.

Variational method.—We can neglect amplitude corre-
lations since simulations show that they are weak be-
tween different sites i; j: hj ijj jji � hj j2i � 0 (i.e., the
amplitude is always positive and shows no critical behav-
ior). Rewriting the free energy F in terms of a constant
amplitude j j yields

F � �
1

�
log

Z
D�e���VS0�j j�V=��

R
ddrS1�;

where the Jacobian of the polar transformation is put into
the exponential, and V is the volume. Equating the de-
rivative of F with respect to j j to zero leads to the self-
consistent equation:
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@j j
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�j j
� cj jhj ~rrei�j2iXY � 0: (4)

The first term, called the amplitude contribution, leads to
the BCS gap equation [11] if other contributions are
neglected. The second comes from the Jacobian and im-
plies that the amplitude is never zero. The third term is the
expectation value of the energy in the XY model depend-
ing on the constant coupling cj j2=2. This contribution
characterizes the influence of the phase fluctuations.
Solutions of Eq. (4) are reliable for all temperatures
except for T � Tc. They are accurate at Tc only in the
underdoped regime.

Average value method.—Now we keep the local cou-
pling in S1 between amplitude and phase by introducing
the statistical Ginzburg-Landau (GL) model (see
Ref. [12]). Averages such as hj ji and hS1i are computed
within the GL model with all fluctuations and correla-
257002-2
tions. Then fermionic observables are expanded with
respect to the average amplitude.

Expanding the energy density obtained from action (3)
around the average amplitude (see Fig. 1) yields

E � hSiS=V � S0�hj ji� � hS1iS �O�h#j ji2�; (5)

where the square of amplitude fluctuations is neglected in
the first approximation. Averages are computed using a
normalized GL action:

SGL� � � kBV0
Z
ddr�UGL � j ~rr j2=2�; (6)

where UGL � &2��T=T0 � 1�j ~  �r�j2 � j ~  �r�j4=2� comes
from the expansion of S0 in powers �j j. T0 is the
mean field pairing temperature, and ~  �  =j 0j, where
 0 �  �T � 0�. SGL is normalized with a lattice spacing
". & :� "=�0, where �0 is the mean field correlation
length at zero temperature. V0 is the zero temperature
phase stiffness. The energy becomes

E � S0�hj jiGL� � hS1iGL; (7)

where S0�hj ji� � �hj ji2=U� � 2
�V

P
q log�2 cosh�Eq=2�

corresponds the BCS free energy for which the gap value
is determined by the GL average. The d-wave quasipar-
ticle energy is Eq � ��"q �)�2 � hj ji2cos2�2*��1=2,
where ) is the chemical potential and * is the angle in
k space with respect to the kx direction.

For computer simulations of the statistical ensemble
f g under the action SGL, we use a standard Monte Carlo
procedure to update amplitude j ~  j and a Wolff [13]
algorithm for the phase � as for the real �4 model
[14]. Typically, 104 sweeps are needed to obtain good
statistics for lattice size: N � 402. The value of & modi-
fies slightly the shape of the average amplitude. The link
between S0 and the GL action is made by fixing the ratio
of j 0j and T0. Since we are interested in the temperature
domain from Tc to T�, the ratio j 0j=T0 is fixed at T � Tc
257002-2
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by requiring that the specific heat jump recovers its BCS
value in the overdoped regime. We found that this ratio
must be j 0j=T0 � 3:06 in the s-wave case, and
j 0j=T0 � 3:72 for d-wave symmetry.

Both approaches are valid below and above the critical
temperature Tc, which is the temperature where the phase
stiffness becomes zero.

The specific heat C is the sum of C0 and C1, amplitude
and gradient contributions, respectively. Defining / �
C=�/nT� where /n is the Sommerfeld constant, the re-
duced specific heat is

/ � /0�hj ji� � /1; (8)

where /1 is divided by Tc instead of T since S1 is classical
and does not satisfy the third law of thermodynamics.

The amplitude contribution /0 is 1 at high temperature.
The gradient contribution is normalized as:

C1
/n

�
kB
�30/n

C�s�
1

NkB
; (9)

where V � N�30, and C�s�
1 =�NkB� is the specific heat per

number of lattice sites coming from the simulations. Ex-
periments give /n � 26 mJK�1 mol�1 � 252 JK�1 m�3.
For the fit of Fig. 2, using the reasonable value �0 � 16 $A,
we get the dimensionless constant 0 � kB=��

3
0/n� �

13:5. In Fig. 2 the experimental specific heat of
YBa2Cu3O6:73 [1] is fitted using the variational method
reproducing the double peak structure: a sharp peak at Tc
coming mainly from correlated phase fluctuations and a
wide hump rounded by amplitude fluctuations (see Fig. 1
for typical distributions). The crossover temperature T1
corresponds to the temperature where /1 is less than
approximately 2% of the normal specific heat. In the
amplitude equation (4), a two-dimensional density of
states D�"� � 1=W is used with W � 5000 K, ) �
0:25W, and U � 959 K. These values give T0 � 200 K
FIG. 2 (color online). The specific heat from the variational
method (thick line), which is the sum of gradient (dashed line)
and amplitude (dot-dashed line) contributions, reproduces
measurements of YBa2Cu3O6:73 (points). Inset: T dependent
amplitude j j from Eq. (4).
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and  0 � 2:14T0 in agreement with experiments [15].
The other parameters are V0 � 72 K and & � 5.

The average value method is used to reproduce specific
heat measured for different dopings in Fig. 3. For under-
doped systems x < 0:80 we use simulations in d � 2. For
the more overdoped, x � 0:80, simulations are done in
d � 3. Parameters V0 and T0 extracted from the best fits
are shown in the phase diagram of Fig. 5. 0 ranges from
7 to 15.

The magnetic susceptibility 2 has two contributions:
the paramagnetic spin susceptibility 2p and the orbital
diamagnetic susceptibility 2d. 2p has been measured by
Takigawa et al. [8] on powderYBa2Cu3O6:63 using Cu and
O NMR experiments. The direct contribution coming
from phases is negligible because NMR probes essentially
the presence of pairs which is related to the amplitude.
Therefore, 2p is given by the amplitude contribution:

2p �
20
2T

Z 24

0

d*
24

Z 1

0
d"cosh�2

��������������������������������������������
"2 � hj ji2GLcos

2�2*�
q

2T
:

(10)

20 is the Pauli spin susceptibility. In Fig. 4, we compare
the result of Eq. (10) and Takigawa’s measurements on
powder YBa2Cu3O6:63. The best fit yields T0 � 159:2 K,
V0 � 59:3 K. The competition between amplitude and
thermal energy enters into the spin susceptibility (10)
by the ratio hj ji=T. The temperature T� where phases
start to influence the thermodynamics is the temperature
where hj ji deviates from the average amplitude com-
puted for random phases. This temperature is found above
Tc at T� � 90 K. The orbital diamagnetic susceptibility
2d in YBa2Cu3O6:60 shows fluctuation effects up to about
15 K above Tc. For T > T�, phase fluctuations are so
strong that 2d vanishes [16].

The Green function can be calculated in coherent po-
tential approximation (CPA) for electrons that are scat-
tered from spatially uncorrelated ‘‘pair impurities.’’ We
extended the s-wave CPA [17] by using a d-wave ampli-
tude and uncorrelated phases. We have computed the
FIG. 3 (color online). Experimental specific heat (points) for
YBa2Cu3O6�x compared to the average value method.
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FIG. 4 (color online). The measured spin susceptibility of
YBa2Cu3O6:63 (points) divided by 20 is well fitted by the
theoretical (thick line) susceptibility 2p. The dot-dashed line
is the standard deviation of the average amplitude. 0.4 0.5 0.6 0.7 0.8 0.9
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FIG. 5 (color online). Phase diagram of YBa2Cu3O6�x.
Effects of amplitudes are large in the quasi-uncorrelated pseu-
dogap region (below T0), whereas phase correlations remain
important only below T�. The temperature T�, where / and 2d
cross over to normal behavior, is located in the hatched area.
Inset: the pseudogap energy scale Eg.
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density of states at half-filling ) � 0:5W and maximum
amplitude j j � 0:8W. The result is a pseudogap of width
( � 0:2W, although phases are completely uncorrelated.

Phase diagram.—Values of T0, V0, and T� extracted
from specific heat fits (Fig. 3) are reported in Fig. 5. T1 is
the temperature where C1=/n � 2%. T� is computed in
the same way as shown in Fig. 4 using average amplitudes
from specific heat fits. Here it is the temperature where the
amplitude differs by 2% from the amplitude in a random
phase field. The energy scale Eg :� hj jiT�200 K of the
pseudogap is defined as the amplitude at T � 200 K. Eg
shows the same doping dependence as the one found by
Tallon and Loram [18]. However, it is not related to any
hidden critical point. Phase correlations above Tc grow
rapidly in the underdoped regime following the T� line
and have a similar doping dependence as Nernst effect
results [19]. The gradient specific heat from S1 disappears
more rapidly such as in the Hall effect [10].

Discussion.—Amplitude and phase fluctuations are the
key for understanding the pseudogap regime of under-
doped high temperature superconductors. Phase correla-
tions disappear completely near a temperature T� above
Tc, and therefore, for T > T�, the pseudogap region is
dominated by amplitude fluctuations. The mean field
temperature T0 has a similar doping dependence as T�,
signaling that the pseudogap region is due to independent
fluctuating pairs. Comparisons with measured specific
heat on underdoped YBCO reproduce the double peak
structure: a sharp peak at Tc coming mainly from phase
correlations and a separate wide hump below T� rounded
by fluctuations. The spin susceptibility, related to the
amplitude, recovers its normal behavior near T�, whereas
the orbital magnetic susceptibility, related to phases, dis-
appears near T�. These considerations are independent
from the underlying pairing mechanism, and any micro-
scopic theory inducing pairing should lead to similar
conclusions.

All of these findings provide additional evidence for
the fact that superconductivity and pseudogap have the
257002-4
same origin. The former is primarily related to phases of
the pairing field, which are ordered below the transition
temperature and whose correlations survive over a lim-
ited temperature region above Tc. The pseudogap regime
of underdoped materials then extends to much higher
temperatures due to the persisting amplitude fluctuations
of the pairing field.
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