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Dynamical Mean-Field Theory of Transport of Small Polarons
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We present a unified view of the transport properties of small polarons in the Holstein model at low
carrier densities, based on the dynamical mean-field theory. The nonperturbative nature of the approach
allows us to study the crossover from classical activated motion at high temperatures to coherent motion
at low temperatures. Large quantitative discrepancies from the standard polaronic formulas are found.
The scaling properties of the resistivity are analyzed, and a simple interpolation formula is proposed in
the nonadiabatic regime.
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weakly scattered by phonons. For small enough W, To do this, we calculate the resistivity of independent
In the common wisdom, polaronic transport in solids is
synonymous of activated conductivity.When electrons are
strongly coupled to bosonic degrees of freedom (phonons,
excitons, etc.), self-trapped states are formed. If the size
of the polaron is comparable with the lattice spacing, the
motion is then dominated by hopping processes: the par-
ticle has to overcome a potential barrier � and loses its
quantum coherence at each hop, giving rise to an acti-
vated law of the form

� � �0e
�=kBT; (1)

where the prefactor �0 is weakly temperature dependent.
Contrary to what happens in semiconductors, the acti-
vated behavior here is not related to the number of ther-
mally excited carriers, but rather to the mobility of the
individual carriers.

The Holstein model [1,2]
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was introduced in the late 1950s to study such a behavior,
as was being measured in some transition metal oxides.
In this model, tight-binding electrons interact locally
with molecular deformations, whose natural vibration
frequency is !0 (t is the hopping parameter; g is the
electron-phonon coupling constant). Although this is a
rather crude idealization of a real solid, the Holstein
model captures the essential physical phenomena in-
volved in small-polaron transport. The situation is in
fact more complex than indicated by the simple formula
(1) and is summarized in several reviews [3]. Three
regimes of temperature can be identified.

At low temperatures, the polarons behave as heavy
particles in a band of renormalized width W and are
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all the states in the band are equally populated, leading
to a ‘‘metalliclike’’ resistivity [3–5] � / �T=W� 

exp�� �h!0=kBT�. The exponential law comes from the
thermal occupation of the optical phonons, which are
assumed to be the main source of scattering. Upon in-
creasing the temperature, the mean free path is rapidly
reduced until the picture of coherent motion breaks down,
typically around some fraction of �h!0=kB. Hopping mo-
tion then becomes more favorable, leading to an activated
behavior of the form (1). The crossover from coherent to
hopping motion is thus characterized by a maximum in
the resistivity. Eventually, at temperatures higher than the
activation energy, the polaron states are thermally disso-
ciated and the residual electrons are strongly scattered by
thermal phonons. In this case, the equipartition principle
leads to �� T3=2 [6]. This theoretical scenario, which
neglects electronic correlations, is in principle restricted
to systems with low carrier densities. At higher densities,
many-body effects should certainly be taken into account
[7,8]. However, the inclusion of electronic correlations
leads to a similar coherent-to-hopping crossover [8].

On the experimental side, the largest amount of work
has been devoted to the activated regime, which is often
observed around room temperature, and resistivities of
the form (1) have been measured in a variety of lightly
doped narrow-band solids [3]. However, strong deviations
from pure Arrhenius behavior are often reported [9], pos-
sibly indicating the onset of the coherent transport re-
gime. In a few cases, the low temperature exponential law
described above has also been identified [10]. Obser-
vations of this kind are rare since the exponential behav-
ior is easily destroyed by the presence of other scattering
mechanisms such as disorder, acoustic phonons, etc.

The main purpose of this work is to shed some light on
the crossover from activated to coherent transport, for
which a reliable theoretical description is still lacking.
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FIG. 1 (color online). Resistivity vs temperature at � � 1:5,
for different values of the adiabaticity parameter. Short arrows
mark the temperature T � !0=2 below which phonon quantum
effects acquire importance. The long upward arrow is the gap
T � �.
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Holstein small polarons in the framework of the dynami-
cal mean-field theory (DMFT). This approximation is
suitable whenever the physics is ruled by local phenom-
ena, as is the case in the present problem, where it allows
one to take into account the quantum nature of the
phonons (!0 � 0) and the finite bandwidth effects (t �

0) on the same footing. Since the theory does not require
any ‘‘small parameter,’’ it is able to go beyond the tradi-
tional approaches usually applied to the problem and
gives reliable results in the regime kBT � �h!0 of interest
here. Moreover, it yields a unified view of the different
regimes of polaronic transport, acting as a testing ground
of the validity of previous approaches.

The DMFT solution of the Holstein model for a single
polaron was presented in Ref. [11], where an analytical
expression for the spectral function A���� was given in
terms of a continued fraction. The polaron formation at
zero temperature can be described by introducing two
independent dimensionless parameters. The first is the
adiabaticity ratio � � !0=D (D is the unrenormalized
half bandwidth) according to which an adiabatic (��
1) and nonadiabatic regime (� 1) can be defined. The
mechanism of polaron formation is fundamentally differ-
ent in the two regimes, leading to different definitions of
the dimensionless electron-phonon coupling. Being EP �
g2=!0 the energy of a polaron on a single lattice site, a
well-defined polaronic state is formed for large � �
EP=D in the adiabatic case, and for large �2 � EP=!0

in the nonadiabatic case [11,12].
The corresponding transport properties can be calcu-

lated through the appropriate Kubo formula, which re-
lates them to the current-current correlation function of
the system at equilibrium. In DMFT, due to the absence of
vertex corrections [13], the latter is fully determined by
the spectral function A����, which is known exactly in the
limit of vanishing density (single polaron problem) [11].
The resistivity at low (but finite) density can then be
derived through an expansion in the fugacity [14],

��T� �
kBT
x��

R
d�N�

R
d�e��=TA����R

d�N� �
R
d�e��=T�A�����2

: (2)

In the above formula, the denominator is the current-
current correlation function, and the numerator is propor-
tional to the carrier concentration x, which was explicitly
taken out (the exponential weights in the integrals reflect
the Boltzmann nature of the carriers). N� and  � are,
respectively, the density of states and the current vertex of
the periodic lattice. The constant � � e2a2= �hv has the
dimensions of conductivity, a being the lattice spacing,
and v being the volume of the unit cell. In the following,
we implicitly report the results for the dimensionless
product �x� , which is inversely proportional to the drift
mobility, and assume �h � kB � 1.

The results for the resistivity are illustrated in Fig. 1 for
fixed � � 1:5 in the adiabatic case. The three regimes
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discussed in the introduction can be clearly identified—
the resistivity first rises exponentially (coherent regime),
then decreases exponentially (activated regime), and
eventually increases again as a power law (residual scat-
tering regime). This is true for all the data sets except at
� � 0:4, where the polaron formation has shifted to
higher values of �, as expected when moving away
from the adiabatic limit [11,12].

Let us focus on the activated regime, !0 & T & �,
where the polaron transport is dominated by incoherent
hopping processes. In the adiabatic limit �! 0, the prob-
lem is generally studied within a simplified ‘‘two-site’’
molecular model [1,15], where the (classical) lattice de-
grees of freedom are seen to move ‘‘adiabatically’’ in the
double-well energy curve determined by the electronic
(bonding) state. At each jump, the system has to over-
come a barrier � � EP=2� t, leading to an Arrhenius-
type behavior [3]

� � 2�T=!0� exp��=T�: (3)

This semiclassical description holds provided that the
transitions to higher (antibonding) electronic states can
be neglected, which corresponds to [1,16]

#2 �
D2

!0

������������
2EPT

p � �2��3�T=!0��
�1=2  1: (4)

Note that this does not coincide with the usual adiabatic-
ity condition �� 1 relevant for polaron formation.

To illustrate the accuracy of the semiclassical predic-
tion, we show in Fig. 2 Arrhenius plots of the resistivity at
fixed � � 0:2, varying the coupling strength �. First of
all, our results indicate that the correct generalization of
the two-site result (3) to infinite lattices is obtained by
letting � � �EP��� �D�=2, where EP��� � D��D=
�8�� � � � � is the adiabatic polaron energy, calculated,
e.g., in Ref. [11] [see Fig. 2, full lines—the slight
256403-2
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FIG. 2 (color online). Arrhenius plots of resistivity divided
by T=!0 for fixed � � 0:2, at various �. The DMFT data are
compared with the semiclassical formula (3) with � �
�EP��� �D�=2 (straight lines) —see text.
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FIG. 3 (color online). Resistivity vs temperature at �2 � 10.
The data points correspond, respectively, to � � 4 ( � ), 2
(squares), 1 ( 
 ), 0.5 (open circles), 0.2 (triangles), 0.15 (filled
circles), 0.1 (open triangles) and were divided by � to evidence
the nonadiabatic scaling property (5). Inset: Arrhenius plot
of � at � � 2, compared with the perturbative formulas—
see text.
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discrepancy at the highest values of � is related to the
breakdown of the condition (4)]. This suggests that the
activated behavior arises from the thermal promotion
from the ground state to the electron continuum, which
differs from the Landau-Zener mechanism involved in
the two-site model. In particular, the reduction of the
activation gap by finite bandwidth effects is much
stronger in the present case.

When the temperature is lowered below T � !0, the
quantum nature of the phonons can no longer be ne-
glected. The lattice zero point fluctuations are then ex-
pected to induce delocalization of the trapped carriers,
resulting in an enhancement of the polaron mobility. This
phenomenon is a precursor of the coherent regime and has
a sizable influence on the transport properties in a wide
range of temperatures between the resistivity maximum
Tb and the phonon frequency !0, which is in principle
experimentally accessible. The enhancement of the mo-
bility is signaled by a marked downturn from the
Arrhenius behavior (see the right-hand side of Fig. 2)
and takes place in the whole polaronic regime � * 1 (as
we see below, this behavior is quite general and is not
restricted to the adiabatic case).

In order to discuss the nonadiabatic case, where the
polaron formation is ruled by the parameter �2, the
resistivity data are illustrated in Fig. 3 for different values
of �, and fixed �2 � 10. We again recognize the three
regimes of polaron transport (coherent, activated, resid-
ual scattering). The presence of such a ‘‘peak-dip’’ struc-
ture is therefore independent of the adiabaticity ratio �
and exists whenever the carriers are of polaronic nature.
At large �, the resistivity obeys the following scaling
property:

��T; �2; �� � �f�T=!0; �2� (5)

as shown in Fig. 3. Although the numerical integrals
involved in Eq. (2) do not lead to an analytical expression
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for ��T�, one can take advantage of the above scaling to
derive a tractable interpolation formula valid in the non-
adiabatic regime. Two limiting behaviors can be identi-
fied: the ‘‘coherent’’ part �C at low temperatures and the
‘‘activated’’ part �H at high temperatures. The total re-
sistivity can be obtained by summing ��1 � ��1

C � ��1
H .

(This corresponds to the assumption that the tunneling
and hopping transition probabilities are additive, as ob-
tained in Ref. [1] for t! 0, and generalized in Ref. [16]
using a perturbative expansion around the nonadiabatic
limit.) Letting y � T=!0, the DMFT data are well de-
scribed by

�C�y� � A��4ye�
2�1=y; (6)

�H�y� � B�y3=2 exp���y�=2y� (7)

with a temperature dependent activation gap:

��y� � �2�1� (�
tanhc=y
c=y

(8)

and with A � 3:82, B � 4:77, c � 0:37, ( � 0:26. Note
that the form of the prefactors in Eqs. (6) and (7) is
constrained by the scaling relation (5). The resulting
curve for � is plotted in Fig. 3 for �2 � 10 (full line),
and we have verified that it agrees with the DMFT data for
any value of �2 at large �. The location of the resistivity
maximum at large � agrees with the value Tb ’
!0=�2 ln�

2� given in Ref. [5], while it fundamentally
contradicts Holstein’s estimate of Ref. [1]. The latter is
based on the assumption that the polaron bandwidth is
reduced with increasing temperature, which is a draw-
back of the perturbative approach (any narrow feature in
the excitation spectrum, such as the polaron band, should
rather get broadened by thermal effects).
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Let us focus on the activated regime, as was done
previously in the adiabatic case. The problem of polaron
transport in this case is generally addressed from the
‘‘atomic’’ limit �! 1 [1,16], treating the band parame-
ter D as a perturbation. At temperatures T * !0, this
yields the nonadiabatic textbook formula [1,17]

��T� � B0�2�y3=2 exp��2=2y� (9)

with B0 � �27=��1=2, while at lower temperatures, the gap
becomes temperature dependent and can be written in the
form of Eq. (8) with c � 0:25 and ( � 0 [see Ref. [1],
Eq. (97)]. Since the expansion parameter which rules the
perturbative treatment is #2 itself, Eq. (9) should hold for
#2 � 1, a condition opposite to Eq. (4) [16].

The inset of Fig. 3 shows an Arrhenius plot of the
resistivity in the activated regime for �2 � 10 and � �
2. As in the adiabatic case, a marked downturn appears
below T � !0, indicating the onset of phonon quantum
fluctuations. In the same inset, we have also drawn the
perturbative result Eq. (9) (dashed line), and its low
temperature generalization (dotted line). Compared to
the DMFT results, we see that the perturbative formulas
wildly overestimate both the absolute value of the resis-
tivity and the activation energy— the slope of the
curve —within the activated regime. Besides, a closer
look at Eq. (9) shows that it does not obey the scaling
formula (5). The disagreement is surprising, in view of the
fact that the chosen parameters (#2 � 0:01) lie well in-
side the range of validity of the perturbative approach.

The large discrepancy comes from the narrow-band
character of the polaronic excitation spectrum. In the
limit D! 0, the electron states are essentially indepen-
dent on different sites. This, together with the fact that the
phonons are assumed to be local and dispersionless, pre-
vents any transfer of energy between sites (the spectral
function is a distribution of delta peaks) and makes the
transition probabilities singular. Holstein healed the sin-
gularity by introducing ad hoc a sizable phonon disper-
sion �!ph � 0, yielding Eq. (9). However, especially in
narrow band materials, the optical phonons often exhibit
rather weak dispersions. Obtaining a finite result when
�!ph ! 0 requires to treat the electron dispersion (i.e.,
the finite bandwidth, D � 0) nonperturbatively. [A
simple calculation shows that, if A��� is a collection of
peaks of width �!, the resistivity is reduced by a factor
of �!=!0 relative to Holstein’s result. The observed
scaling behavior (5) is recovered by noting that, if the
broadening of the peaks is of electronic origin, then
�!el / D. In practical cases, where both the electrons
and the phonons disperse, it is likely that the transport
properties are determined by the larger of �!el;�!ph.]

In summary, we have applied the DMFT to study the
transport properties of small polarons. The different be-
haviors expected by standard polaron theory—coherent,
activated, and residual scattering regime —are recovered
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within a unified treatment, although notable deviations
from the commonly accepted formulas are found. First of
all, a broad intermediate temperature regime emerges,
regardless of the adiabaticity parameter �, where the
resistivity is still semiconductinglike, but is strongly in-
fluenced by phonon quantum fluctuations. This regime,
comprised between the resistivity maximum Tb and the
phonon frequency !0, should be easily detected experi-
mentally as a downturn in the Arrhenius plots of the
resistivity. Second, in the nonadiabatic regime, the
DMFT results obey a simple scaling property, which is
not compatible with the standard polaronic formulas of
Holstein. Accordingly, large discrepancies arise in the
predicted resistivity, which could quantitatively modify
our interpretation of the experiments.
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a critical reading of the manuscript.
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