
P H Y S I C A L R E V I E W L E T T E R S week ending
19 DECEMBER 2003VOLUME 91, NUMBER 25
Transition from Kardar-Parisi-Zhang to Tilted Interface Critical Behavior
in a Solvable Asymmetric Avalanche Model

A. M. Povolotsky,1,2 V. B. Priezzhev,2 and Chin-Kun Hu1,*
1Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

2Bogoliubov Laboratory of Theoretical Physics, J.I.N.R., Dubna 141980, Russia
(Received 2 May 2003; published 16 December 2003)
255701-1
We use a discrete-time formulation of the asymmetric avalanche process (ASAP) [Phys. Rev. Lett. 87,
084301 (2001)] of p particles on a finite ring of N sites to obtain an exact expression for the average
avalanche size as a function of toppling probabilities and particle density � � p=N. By mapping the
model onto driven interface problems, we find that the ASAP incorporates the annealed Kardar-Parizi-
Zhang and quenched tilted interface dynamics for � < �c and � > �c, respectively, with �c being the
critical density for given toppling probabilities and N ! 1. We analyze the crossover between two
regimes and show which parameters are relevant near the transition point.
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depinning threshold, the avalanches lead to local ad-
vances of finite interface segments, so that they can be

limit, � ! 0, coincides with the case considered in [11],
as only the terms of order � survive in the master
The properties of driven interfaces have been attracting
great attention for many years due to their connection
with a variety of physical phenomena such as fluid flow
through porous media, motion of charge density waves,
flux lines in superconductors, etc. [1–4]. The results ob-
tained can be roughly split into two groups. The first one
incorporates growth phenomena where thermal or an-
nealed fluctuations affect the dynamics. The most famous
example is the Kardar-Parizi-Zhang (KPZ) universality
class characterized by the roughness exponent � � 1=2
and the dynamical exponent z � 3=2 in 1� 1 dimensions
[5]. In the second group, an interface moves under the
action of an external driving force F, which competes
with pinning forces due to quenched medium inhomoge-
neities. At some critical force Fc the transition occurs
from the totally pinned state to the state where the inter-
face moves with a velocity v, which shows a power law
decay v� �F� Fc�

� whenF approaches the critical point
Fc from above [6].

The scaling properties of interfaces in the quenched
case strongly depend on the medium isotropy. The iso-
tropic medium produces a rough interface, which is be-
lieved to obey the quenched KPZ equation with a
nonlinear term vanishing at the depinning threshold
[7,8]. In the anisotropic medium, the quenched KPZ
equation holds only for a definite orientation (hard direc-
tion) of the interface, yielding a divergent nonlinear term.
The tilt from the hard direction generates the gradient
term in the equation which breaks the translation invar-
iance. The existence of such a term gives rise to another
universality class, tilted interface (TI) class, character-
ized in 1� 1 dimensions by the exact exponents � �
1=2, z � 1, and � � 1 [7,8].

It has been noted that thermal fluctuations below the
depinning threshold can initiate avalanches, which lead
to infinitely slow creep of the interface [9]. Far below
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considered under coarsening as a local annealed disorder
in an appropriate time scale. Approaching the depinning
threshold, the avalanches increase up to the system size
and contribute to a global interface depinning which is
controlled by the quenched disorder. It is the aim of this
Letter to treat the effects of annealed and quenched
disorders in a frame of a unified model.

Because of the well-known correspondence between
growth processes in �1� 1� dimensions and one-
dimensional lattice gases [1], we can interpret the ava-
lanche dynamics of interfaces in terms of avalanches of
particles similar to those appearing in one-dimensional
random sandpile models [10]. Then, we can use the asym-
metric avalanche process (ASAP) which has been re-
cently proposed and solved by the Bethe ansatz method
[11]. Having formal origin in the asymmetric exclusion
process (ASEP) [12], the ASAP has completely different
dynamical behavior specific for systems with avalanche
dynamics which has been widely investigated in the
context of self-organized criticality [13,14].

The ASAP was defined as follows [11]. Consider the
system of p particles on a one-dimensional lattice of N
sites with periodical boundary conditions, i.e., a ring ofN
sites. The system evolves by discrete-time steps according
to the following rules: (a) If all particles occupy different
sites of the lattice, then one randomly chosen particle
moves one step to the right neighboring site with a fixed
probability � for one time step; (b) if there are n > 1
particles at the same site, referred to as an active site, the
diffusive motion is replaced by the avalanche dynamics:
either all n particles move to the next right site at the next
time step with probability �n or n� 1 particles move
one step to the next right site with probability 1��n,
while one particle remains unmoved. Thus, we use a
random sequential update and separate in time the ava-
lanche and single particle dynamics. The continuous time
2003 The American Physical Society 255701-1
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equation. The dynamical rules (a) and (b) imply that at
most one active site exists at any moment of time.

The interface problem appears if we associate the occu-
pation number ni on a site i with an interface height
decrease ni � h�i� � h�i� 1� so that the density of par-
ticles � � p=N is the average tilt of the interface with
respect to the original 1D lattice. The periodic boundary
conditions with the tilted interface imply a helicoidal
boundary condition for the interface, h�i�N��h�i��p.
At every moment of time, the height of such an interface
is a monotonously decreasing step function. The step of
height n � 1 moves right diffusively (with probability
�), whereas the steps of height n > 1 move like ava-
lanches. A moving step, i.e., avalanche front, can increase
by 1, merging with a step next to it, or decrease by 1,
leaving a new step behind. The latter, happening with
probability 1��n, mimics the action of random pinning
forces.

In the infinite system, different choices of probabilities
�n have been shown to lead to different regimes of
particle flow, intermittent or continuous [11]. In the for-
mer case, finite avalanches are triggered by rare single
particle jumps. As far as the avalanches are finite, we use
the jump rate as a characteristic time scale, referred to as
a diffusive timescale. To meet the continuous time picture
of Ref. [11], we associate every discrete-time step with
a continuous time interval dt � �=p with � approach-
ing zero. Then the average velocity of the interface, V 	
h@thi � �hsi, is given by the product of an average ava-
lanche size, hsi, i.e., average area attached to the interface
during an avalanche, and the rate of avalanche initiation
per site (equal to the average tilt) �. The large scale and
long time properties of the ASAP, e.g., the variance of the
interface height fluctuation, w2 � t=

����
N

p
, and its large

deviation function, in the intermittent flow phase ob-
tained from the Bethe ansatz solution are shown [15] to
coincide with properties of the ASEP, which serves as a
model for the discretized KPZ equation. Though these
results are obtained from the Bethe ansatz solution for
special choice of probabilities �n, which provides inte-
grability, KPZ behavior is expected to hold for a much
wider class of probabilities, provided that the avalanches
remain finite.

The above quantities, however, become singular when
the average tilt � reaches the point of transition to the
continuous flow phase, �c. For example, the average
velocity, V, diverges with critical exponent � [11],

V � ��c � ��
��: (1)

The divergency of V means that the description based on
the diffusive time scale fails in the thermodynamic limit.
In this Letter, we obtain the exact V of finite interface and
show that V grows together with the system size at the
critical point and above. This means that avalanches lose
their local character and cover the whole system. This
situation is specific for the pinning-depinning phase
255701-2
transition above the critical point. To describe the inter-
face in this case, one should look at the time evolution
of a single avalanche at a time scale much faster than the
diffusive one. The lattice model of such a kind belong-
ing to the TI universality class has been first solved by
Maslov and Zhang (MZ) at the critical point [10] by
using the mapping of avalanche dynamics to the simple
random walk problem. In this Letter we generalize this
mapping to the more general Gillis random walk prob-
lem [16], which allows one to consider arbitrary values
of � besides � � 2 corresponding to the MZ model.
Combining the exact formula for the velocity of the finite
interface with random walk arguments we study the
crossover between two types of critical behavior of inter-
faces and show which parameters are relevant near the
transition point.

Consider first the stationary state of the system. The
stationary probability, P�C�, of the particle configuration
C on the lattice can be obtained from the balance equationX

fC0g

�T�C;C0�P�C0� � T�C0; C�P�C�� � 0; (2)

where T�C;C0� denotes the transition probability from the
configuration C0 to C and the summation is over all
possible configurations of particles. For T�C;C0� specified
by the dynamical rules described above the solution of
Eq. (2) can be represented as a product of ‘‘one-site’’
factors [17]. As at most one active site exists in any
configuration, its probability depends only on the number
of particles in this site. Let P �n� be the probability of any
configuration with n particles at the active site. Then the
solution of Eq. (2) is given by

P �n�1� � P �n��n=�1��n�1�; (3)

where n � 1; 2; . . . ; p� 1, and �1 � �=p. The only un-
determined constant here is P �1�, the probability of stable
configurations with no active site, which is defined from
the normalization condition

P
fCgP�C� � 1.

As it follows from Eq. (3), when n particles leave an
active site at some step of an avalanche, all configurations
of the remaining p� n particles at the lattice occur
equally likely. Therefore, the expected number Pk�n� of
events when n particles leave an active site at the kth step
of an avalanche obey the following Markov equation:

Pk�1�n� �
X
m

Pk�m�wm;n (4)

with transition probabilities
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for n > 1, w1;2 � ��� 1
N��2, w1;1 � ��� 1

N��1��2�,
w2;1 � �1� ��� 2

N���1��2�, and wm;n � 0 in all the
other cases. The transition probabilities wm;n correspond
to the events when m particles flow into a site and n
particles flow out, generalizing those in [11] to the case
of the finite lattice. Proceeding parallel to [11], we obtain
the total expected number of jumps of n particles during
the whole avalanche P�n� �

P
1
k�1 Pk�n�,

P�n� �
N��p���N � p� 1�

��p� n� 1���N � p� n� 1�

Yn
j�2

�j
1��j

; (5)

for n > 1. The expected total number of particles spilled
during an avalanche, i.e., the average avalanche size, is
given by

hsi � V=� �
Xp
n�1

nP�n�: (6)

Consider the asymptotic limit N ! 1; p! 1; p=N �
� � const. To this end, we have to specify the toppling
probabilities�n for large n.We suppose that �n tends to a
constant �1 when n! 1 having the following �1=n�
expansion: �n=�1��n���1=�1��1��1����2�=n�
O�1=n2��. Then, for all positive �, the sum in Eq. (6) is
finite if the density is less than the critical value
�c � 1��1. The parameter � is introduced in such a
way that the expansion of Eqs. (5) and (6) in n=N results
in the power law of Eq. (1). The 1=N correction to this law
is of interest, as it determines the behavior of the non-
linear coefficient ! in the KPZ equation [2], which de-
pends on the tilt diverging at the critical point

!� N�V�1� � V�N�� � ��c � �����2: (7)

The behavior of V�1� is also related to ! through a
nonuniversal constant a, V�1� � !=a, which plays the
role of a small length cutoff in the KPZ equation. In our
case, we have a� ��c � ��

�2. Considering the expansion
of V in powers a=N, we see that the requirement of the
parameter r � a=N to be small gives a limit of applica-
bility of the undercritical expansion and, hence, of KPZ
description. In such a way, r is expected to be the control
parameter of the transition, which is confirmed below in a
different context.

To probe into the whole phase space, we approximate �
functions in Eq. (5) by the Stirling formula and replace
the sum in Eq. (6) by the integral. The equation for the
saddle point, �lnP�n0��0 � 0, results in

n0 ’ N��� �c�; �lnP�n0��
00 ’ �N��1� ����1: (8)

Hence, when � < �c, only the region n� N contributes
the sum in Eq. (6), which confirms the validity of the n=N
expansion used. The location of the saddle point at n0 has
due to Eq. (8) a transparent physical meaning. It is the
height of an avalanche front spreading through the lattice,
which compensates the excess slope of the interface
maintaining it at the critical tilt �c [8]. The evaluation
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of the integral in the saddle point approximation for � >
�c gives the leading part of V, exponentially growing
with N

V � ��� �c�
��1N��1=2

��
�
�c

�
�
�
1� �
1� �c

�
1��

�
N
: (9)

At the critical tilt, �c, the average avalanche size reveals
the power law dependence on the system size

Vc � N
�=2: (10)

The crossover from subcritical to supercritical regime
through the critical point can be viewed in the function
obtained from another expansion of Eq. (5) for 1 � n0 �
N, namely, V � Vcg��u�, where

g��u� �
2eu

2

���=2�

Z 1

�u
dx�x� u���1e�x

2
(11)

is a function depending on the parameter � and variable
u �

����������������������������
N�1� ���=2

p
ln�1��c��

�1����c
. Near the critical point u�

��� �c�
����
N

p
, or in terms of the parameter r discussed

above, u��1=
���
r

p
. The function g��u� is equal to 1 when

u � 0 and decays as juj�� when u! �1, thus eliminat-
ing the dependence of V on N in the subcritical regime. It
is clear from the results obtained that the limits �! �c
and N ! 1 do not commute. Then, the value of u serves
as a characteristic distance from the critical point, i.e.,
a parameter indicating either the system is in the sub-
critical (KPZ) or critical (TI) regime.

As we have noted, at the critical point and above the
dynamics of avalanche in the fast time scale should be
considered to describe properties of the interface.
According to [8], the TI universality class is characterized
by fronts moving parallel to the average tilt, being char-
acterized by the KPZ equation in (d� 1) transverse
directions. In the 1D case, the 0� 1 dimensional KPZ
equation is reduced to a noise term only, which corre-
sponds to simple random walks of height of the active
site. Let us consider the form of transition probabilities in
Eq. (4) for � � �c. One can see that the height of an
active site in the ASAP also performs the simple random
walk when � � 2. However, for � � 2 the normalized
transition probabilities, defined as p�n! n� 1� �
wn;n�1=�wn;n�1 � wn;n�1�, contain the nonuniform bias
term, ��� 2�=2n, decreasing with the distance n from
the origin. This term, first considered by Gillis [16], is the
only relevant term of the expansion, p�n! n� 1� �
1=2�1� ��� 2�=�2n� �O�1=n2��, which changes the
asymptotical behavior of first return time of the ran-
dom walk. Depending on whether � is larger or less
than two, it can be either positive or negative, respec-
tively, enhancing or suppressing the avalanche spreading.

As usual, we assume the following scaling ansatz for
avalanche size and time distribution P�s� � s�(g�s=s0�
and P�t� � t�(tg�t=t0� in the vicinity of the critical point,
where g�x� is a scaling function, and s0; t0 are time and
size cutoffs. The time cutoff t0 plays also the role of the
255701-3
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avalanche correlation length. Knowing asymptotics for
mean conditional time of the first return for the Gillis
random walk [18], we can obtain the avalanche time criti-
cal exponent, (t � 5=2� �=2 for 1 � �< 3. Consider-
ing the avalanche size statistics, we should note that
unlike the exponent (t, the dimension of avalanches D
does not depend on � and coincides with the unbiased
case, which can be directly checked by multiplying the
original equation, Eq. (4), by n2 and summing by parts.
This yields hn2i � t and hence D � 3=2 and ( �
2� �=3. The other critical exponents characterizing
underlying interface dynamics remain unchanged com-
paring to the unbiased MZ case. Particularly, the expo-
nent characterizing the correlation length below the
critical point, defined in our case by t0 � ��c � ��

�*,
can be uniquely fixed as * � 2 from the relation between
the average avalanche size below �c, Eq. (1), with the
correlation length, V � tD�2�(�0 . Hence, the upper bound
of the avalanche length t0 coincides with the small length
cutoff a of the KPZ equation, i.e., below the critical point
it is that parameter, which defines the space scale of
continuous KPZ description. The relation (10) shows
that t0 approaches the system size, t0 � N, at the critical
point irrespectively of �, which confirms the dynamical
exponent z � 1. Thus, the control parameter u in Eq. (11)
can be treated as a ratio of the avalanche correlation
length to its critical value. The exponent � � 1 just above
the depinning threshold follows from the value of n0,
Eq. (8), which gives a characteristic increase of the inter-
face height after one avalanche passage proportional to
��� �c�. The roughness exponent is � � 1=2 due to
equiprobability of stationary particle configurations,
P �1��C� � const, established above [19], which is equiva-
lent to the Gaussian measure for the gradient of the
interfacial height in the continuum limit. At the critical
point, it can also be obtained from the dimension of the
random walk � � D� d [8,10].

We should note that the scaling relation ( � 1�
�d� 1=*�=D between exponents * and ( [10] does not
hold in our case for � � 2. This relation reflects the fact
that the interface below the depinning threshold is frozen
in the metastable state where the width and avalanche size
are expressed through the same correlation length [4]. In
our case, however, the interface below the critical point
comes to the stationary state due to annealed disorder,
irrelevant of the details of the avalanche dynamics, with
the interfacial width bounded only by the system size.
Thus, the symmetry responsible for the scaling relation is
clearly absent in our case.

The above results are valid for 1 � �< 3. For �< 1,
the average avalanche size is finite, and universal be-
havior is lost. For � > 3, the Gillis random walk becomes
transient; i.e., its return to the origin is not definite. When
255701-4
� � 3, logarithmic corrections to power laws should be
taken into account. These cases will be studied elsewhere.

In summary, we have found that the asymmetric ava-
lanche process (ASAP) [11] incorporates the annealed
KPZ and quenched TI interface dynamics for � < �c
and � > �c, respectively. All critical exponents charac-
terizing the interface behavior in both classes are ob-
tained exactly and shown to coincide with those known
before. Nevertheless, the exact calculation of the average
avalanche size and random walk arguments show that the
critical exponents of avalanche distributions are continu-
ous functions of the parameter � responsible for the
asymptotics of toppling probabilities.
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