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Resonant Behavior of Dielectric Objects (Electrostatic Resonances)

D. R. Fredkin*
Department of Physics, University of California–San Diego, La Jolla, California 92037, USA

I. D. Mayergoyz
Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

(Received 17 February 2003; published 19 December 2003)
253902-1
Resonant behavior of dielectric objects occurs at certain frequencies for which the object permit-
tivity is negative and the free-space wavelength is large in comparison with the object dimensions.
Unique physical features of these resonances are studied and a novel technique for the calculation of
resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of
resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-
dimensional phenomenon of ‘‘twin’’ spectra are reported. The paper concludes with brief discussions of
optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic
resonance based, mechanism for nucleation and formation of ball lightning.
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dimensions. Unusually strong orthogonality properties
of resonance modes are obtained. These orthogonality FIG. 1. The dielectric region V� bounded by the surface S.
Small dielectric objects can exhibit resonance behav-
ior at certain frequencies for which the object permit-
tivity is negative and the free-space wavelength is large
in comparison with object dimensions. The latter condi-
tion clearly suggests that these resonances are electro-
static in nature. They appear at specific negative values
of dielectric permittivity for which source-free electro-
static fields may exist. This is, in essence, the physical
mechanism of these resonances. For nanoscale metallic
objects, these resonances occur in the optical frequency
range and they result in powerful localized sources of
light that are useful in scanning near-field optical mi-
croscopy [1,2], nanolithography [3], and in biosensor
applications [4,5]. It is also believed [6] that strong local
electromagnetic fields associated with these resonances
may play an important role in surface enhanced Raman
scattering [7–9]. Currently, such resonances are found
experimentally (or numerically) by probing dielectric
objects of complex shapes with radiation of various fre-
quencies [10–13]. General physical properties of these
resonances have not been studied and there has not existed
any technique for direct calculation of negative values of
dielectric permittivity, and the corresponding frequen-
cies of electromagnetic radiation, for which resonances
occur. The purpose of this paper is to develop such a
technique as well as to study unique physical features
of electrostatic resonances. It is demonstrated that the
resonance values of permittivity, and hence the resonance
frequencies, can be directly (i.e., without laborious prob-
ing) found by computing the eigenvalues of a specific
boundary integral equation. This approach reveals the
unique physical property of electrostatic resonances:
resonance frequencies depend on dielectric object shapes,
but they are scale invariant with respect to geometric
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properties are physically important for the selection
of resonance modes that can be coupled to incident elec-
tromagnetic radiation. It is found that in the case of
nanowires (i.e., two-dimensional particles) the physical
phenomenon of twin spectra occurs where resonance
values of relative dielectric permittivity are arranged in
pairs of reciprocal negative numbers. A priori estimates of
upper and lower bounds for resonance frequencies are
obtained for convex dielectric objects. These estimates
effectively narrow the frequency range of possible reso-
nances. The paper is concluded with a brief discussion of a
plausible, electrostatic resonance based, mechanism for
nucleation and formation of ball lightning.

To start the discussion, consider a dielectric object of
arbitrary shape with permittivity " (Fig. 1). We are inter-
ested in such negative values of " for which a source-free
electrostatic field may exist. This source-free field is curl
and divergence free inside (V�) and outside (V�) of the
dielectric object; its electric potential is continuous across
the boundary S of the object, while the normal compo-
nents of the electric field satisfy the boundary condition:

"E�
n � "0E

�
n on S: (1)
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The electric potential of this source-free field can be
represented as an electric potential of a single layer of
electric charges � distributed over S:

’�Q� �
1

4�"0

Z
S

��M�

rMQ
dSM: (2)

In other words, a single layer of electric charges � on S
creates the same electric field in the free space as the
source-free electric field that may exist in the presence
of the dielectric object. It is apparent that the electric
field of surface charges � is curl and divergence free in
V� and V� and its potential is continuous across S. To
satisfy the boundary condition (1), we recall that the
normal components of the electric field of a single layer
potential are given by the formulas [14,15]

E�
n �Q� � �

��Q�

2"0
�

1

4�"0

Z
S
��M�

rMQ � nQ

r3MQ

dSM: (3)

By substituting (3) into the boundary condition (1), we
arrive at the homogeneous boundary integral equation

��Q� �
�
2�

Z
S
��M�

rMQ � nQ

r3MQ

dSM; (4)

where

� �
"� "0
"� "0

: (5)

Thus, source-free electric fields may exist only for such
values of permittivity " that integral equation (4) has
nonzero solutions. In other words, in order to find the
resonance values of " (and the corresponding resonance
frequencies) as well as resonance electrostatic modes, the
eigenvalues and eigenfunctions of the integral equation
(4) must be found.

Since the integral operator in (4) is compact, the spec-
trum is discrete. It can be shown that the spectrum has the
following interesting properties: all eigenvalues are real,
� � 1 is an eigenvalue, and for all other eigenvalues j�j >
1 [16,17]. The eigenvalue � � 1 corresponds to the case of
" ! 1 and the respective eigenfunction ��M� is the
distribution of surface electric charges over the surface
S of conductor V�. This eigenvalue is irrelevant to our
discussions. All other eigenvalues correspond to source-
free (resonance) configurations of electrostatic fields and,
according to (5), these configurations may exist (as ex-
pected) only for negative values of ". After these negative
resonance values of " are found through the solution of
integral equation (4), the appropriate frequency depen-
dent permittivity "�!� can be employed to find the reso-
nance frequencies.

It is apparent that the mathematical structure of inte-
gral equation (4) is invariant with respect to the scaling of
S, i.e., the scaling of the dimensions of the dielectric
object. This leads to the unique property of electrostatic
resonances: resonance frequencies depend on object shape
but they are scale invariant with respect to dielectric
253902-2
object dimensions, provided that they remain appreciably
smaller than the free-space wavelength.

The integral operator in Eq. (4) is not Hermitian (not
self-adjoint), because the kernel of this equation is not
symmetric. For this reason, the eigenfunctions �i�M� and
�k�M� corresponding to different eigenvalues �i and �k
are not orthogonal on S. Nevertheless, it can be shown
that the electric fields Ei and Ek corresponding to eigen-
functions �i and �k satisfy

Z
V�

Ei � EkdV � 0: (6)

The peculiar feature of the above orthogonality condi-
tions is that they hold separately in regions V� and V�.

These orthogonality conditions can be useful in the
analysis of the coupling of a specific resonance mode to
incident electromagnetic fields. For instance, for a sphere
and for ellipsoids there are resonance modes with uniform
electric fields in V� (see below). This means, according to
the orthogonality condition, that only these ‘‘uniform’’
resonance modes will be excited by uniform (within V�)
incident radiation. The condition of uniformity within V�

of the incident radiation is to some extent natural due to
the smallness of object dimensions in comparison with
the free-space wavelength of the incident radiation. For
dielectric objects of complex shapes, many resonance
modes with appreciable average values of electric field
components over V� may exist. All such modes will be
well coupled to the uniform incident radiation and can be
excited by such incident fields at the respective resonance
frequencies.

It can be shown that for two-dimensional objects (i.e.,
nanowires) an interesting phenomenon of twin spectra
occurs where the set of eigenvalues consists of pairs of
real numbers symmetric with respect to the origin.
According to (5), this means that the set of resonance
values of the relative dielectric permittivity consists of
pairs of reciprocal negative numbers. This twin spectrum
phenomenon occurs for two-dimensional objects of any
cross-sectional shapes.

For convex S, the following estimate for the eigen-
values � can be derived:

j�j > c �
1

1� A
4�Rd

; (7)

where A is the area of S, R is the maximum radius of the
curvature of S, and d is the diameter of V�. By using the
last inequality and (5), the following upper and lower
bounds for possible resonance values of permittivity " can
be obtained:

1� c
1� c

<
"
"0

<
1� c
1� c

: (8)

For the common plasma permittivity "="0 � 1�
!2

p=!2, the last formula leads to the following upper
and lower bounds for resonance frequencies:
253902-2
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c� 1

2c
<

!2

!2
p
<

c� 1

2c
; (9)

which suggests that the bandwidth for resonance frequen-
cies is smaller than !p=

���
c

p
� !p

������������������������
1� A=2Rd

p
.

Consider two examples such as the following.
First, in the case of a unit dielectric sphere, the kernel

of integral equation (4) is equal to 1=2rMQ. By using this
fact and the spherical harmonic addition theorem, it is
easy to demonstrate that the spherical harmonics
Y‘m��;�� are the eigenfunctions corresponding to the
eigenvalue �‘ � 2‘� 1. According to (5), the corre-
sponding resonance values of permittivity are "‘ �
�"0�1� 1=‘� (‘  1). Because of the scale invariance,
the same "‘ are the resonance permittivity values for a
dielectric sphere of arbitrary radius. The three lowest
electrostatic modes corresponding to "1 � �2"0 are uni-
form in V� and only these modes can be excited by
uniform (within V�) incident radiation.

Second, consider a dielectric ellipsoid. In this case, the
resonance permittivity values corresponding to uniform
source-free electric fields in V� can be found without
solving integral equation (4). Indeed, the source-free uni-
form electric fields E� inside the ellipsoid must satisfy
the homogeneous equations:

"
"0

NE� � �l� N�E� � 0; (10)

where N is (for the appropriate choice of axes) a diagonal
matrix of depolarizing coefficients, while I is the identity
matrix. Nonzero solutions of Eq. (10) exist for such values
of " that the diagonal matrix I� �"="0 � 1�N is singular.
It follows that spatially uniform (inside the ellipsoid)
electrostatic resonances may exist only for the special
values of permittivity

"i � "0�1� 1=Ni�; (11)

where Ni are diagonal entries of N. It follows from the
orthogonality conditions (6) that for all other resonance
electrostatic modes the mean values of electric field com-
ponents in V� are equal to zero. For this reason, all other
resonance modes cannot be excited by spatially uniform
incident radiation. It is apparent from (11), that for any
negative value of " an appropriate ellipsoid can be found
that will ‘‘resonate’’ for this ". In the case of the plasma
" � "0�1�!2

p=!2�, the last assertion means that any
frequency !<!p can be a resonance frequency for an
appropriate ellipsoid. Finally, from the above dispersion
relation and the condition

P
iNi � 1 it follows thatP

i!
2
i � !2

p, where !i are the resonance frequencies
‘‘along’’ the main axes.

For dielectric objects of complex shapes the resonance
frequencies and resonance modes can be found through
numerical solution of integral equation (4). If the bound-
ary S of the dielectric object is irregular, then ��M� may
have singularities at the corners and the edges of S. In this
situation, it may be more convenient to solve the integral
equation
253902-3
 �Q� �
�
2�

Z
S
 �M�

rQM � nM

r3QM
dSM (12)

that is adjoint to Eq. (4) and has the same spectrum.
Equation (12) has a simple physical meaning. Solutions
 �M� of the integral equation (12) signify dipole den-
sities, i.e., densities of a double layer of electric charges
distributed over S that create the same electric displace-
ment field (D) as the source-free electric displacement
field that may exist in the presence of dielectric objects
with negative ".

By solving integral equation (4) [or Eq. (12)], the
electric fields of electrostatic modes can be found. By
using these fields, multipoles of dielectric objects can be
computed and then can be used to evaluate radiation
losses (and quality factors) associated with electro-
static resonances. However, the near field is given by the
appropriate integral over the equivalent charge distribu-
tion �, which will be quite different from a superposi-
tion of multipole fields in all cases except for a sphere.
Corrections to electrostatic resonance modes due to ra-
diation can be found by using series expansions of the
solutions to time harmonic Maxwell equations with re-
spect to the small ratio of the object diameter to the free-
space wavelength. It is apparent that, unlike electrostatic
resonance modes, these radiative corrections are not scale
invariant.

Our discussion can be easily extended to the analysis
of electrostatic resonances of several dielectric objects
located in proximity to one another. In this case, S in
integral equation (4) must be construed as the union of
boundaries of all dielectric objects and � as being defined
on this union. The spectral properties of integral equation
(4) and the orthogonality conditions are the same as in the
case of a single dielectric object.

We next present some illustrative calculations in
two dimensions, i.e., for infinite cylinders. The two-
dimensional version of (4) is

��Q� �
�
�

Z
S
��M�

rMQ � nQ

r2MQ

dSM; (13)

where S is now the boundary curve with line element
dS, and the potential is the logarithmic potential cre-
ated by the line charge with density �. We first inves-
tigated ellipses (infinite elliptic cylinders), for which
the spectrum can be found analytically. An ellipse with
semimajor axis a and semiminor axis b has spectrum
�0 � 1 and

��
n � �

�
a� b
a� b

�
n
: (14)

The eigenvalues ��
1 correspond to a uniform field in V�

and are related to the depolarization coefficients

Na �
b

a� b
; Nb �

a
a� b

: (15)

The dipole moments associated with all other modes are
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TABLE I. Spectrum of an ellipse with 5:1 aspect ratio.

Numerical Exact Numerical Exact

1.0010 1.0000
�1:4992 �1:5000 1.5037 1.5000
�2:2472 �2:2500 2.2573 2.2500
�3:3670 �3:3750 3.3898 3.3750
�5:0419 �5:0625 5.0932 5.0625
�7:5437 �7:5938 7.6592 7.5938
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zero. Table I shows numerical results for an ellipse with
a=b � 5.

We also studied the spectrum of an equilateral triangle
with rounded corners. In this case, the spectrum is not
known a priori; however, certain qualitative features of
this spectrum can be predicted on the basis of symmetry.
Indeed, the above triangle is invariant with respect to
the transformations of the group C3v [18]. This group
has three inequivalent irreducible representations: two
of dimension one and one of dimension two. This fact
implies that the spectrum may consist only of simple and
twofold degenerate eigenvalues and that the dipole mo-
ments of resonance modes corresponding to simple eigen-
values are equal to zero. Table II shows our numerical
results, which are consistent with these qualitative fea-
tures of the spectrum. It is clear on the symmetry
grounds that the same spectral features are also valid
for a three-dimensional prism with the same cross sec-
tion. It is also clear that similar qualitative spectral
features can be predicted for other symmetric three-
dimensional dielectric objects by using irreducible rep-
resentations of their symmetry groups.

It is worthwhile to point out that electrostatic reso-
nances in semiconductor nanoparticles are of special
interest because they can be controlled through optical
manipulation of the carrier densities. This optical con-
trollability can be utilized for the development of nano-
scale light switches and all-optical nanotransistors.
TABLE II. Numerical results for the rounded triangle.

Eigenvalue (�) dx dy

1.0015 0.0000 0.0000
�2:4459 �0:1681 �0:3028
�2:4459 �0:3094 0.1556

2.4696 �0:0472 �0:6230
2.4696 �0:6244 0.0200

�4:3263 �0:0000 �0:0000
4.3809 0.0000 �0:0000

�13:3646 �0:0421 0.0656
�13:3646 0.0628 0.0461

13.5374 �0:0267 0.0808
13.5374 0.0149 �0:0838
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We conclude this paper with a brief discussion of a
plausible explanation of the phenomenon of ball lightning
based on electrostatic resonances. This enigmatic natural
phenomenon usually occurs after a lightning strike that
may lead to plasma formation and serve as a source of
considerable electromagnetic radiation [19,20]. If the fre-
quency spectrum of this radiation is such that the dielec-
tric permittivity of the formed plasma is negative, then
electrostatic resonances may occur. The nucleation of
electrostatic resonances and the spatial growth of reso-
nance regions may be facilitated by the scale invariance
of the resonance frequencies. Electrostatic resonances
may produce a considerable localized accumulation of
electromagnetic energy that may visually manifest itself
as ball lightning.
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