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We discuss radiative corrections to an atomic two-level system subject to an intense driving laser
field. It is shown that the Lamb shift of the laser-dressed states, which are the natural state basis of the
combined atom-laser system, cannot be explained in terms of the Lamb shift received by the atomic
bare states which is usually observed in spectroscopic experiments. In the final part, we propose an
experimental scheme to measure these corrections based on the incoherent resonance fluorescence

spectrum of the driven atom.
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The interaction of coherent light with matter is of
cardinal interest both from a theoretical point of view
as well as for applications. Thus it is not surprising that
different approaches to this problem have been proposed
and successfully applied. At the most fundamental level,
quantum electrodynamics (QED) is one of the most ac-
curate theories known so far [1-3]. The bound-state self-
energy as predicted by QED is the dominant radiative
correction in hydrogenlike systems and gives 98% of the
ground-state Lamb shift in atomic hydrogen [4]. QED
radiative corrections are usually evaluated with the adia-
batic S-matrix formalism [5,6]. A complementary ap-
proach to the matter-light interaction based on the same
foundations is quantum optics [7,8], which is especially
suited for the description of time-dependent processes for
which the adiabatic S matrix is of limited use. Within the
quantum optical formalism, the atom-laser interaction
may intuitively be understood with the help of the so-
called dressed states which are defined as the eigenstates
of the interacting system of light and matter [9]. A text-
book application is the incoherent, inelastic resonance
fluorescence spectrum of an atomic system subject to a
driving laser field (see [7], Chap. 10). It is well known that
the peaks of the incoherent spectrum may easily be
interpreted with the help of dressed states. The incoherent
fluorescence has received considerable attention in the
past, both theoretically and experimentally, as it may be
modified by external influences to a great extent (see [7],
Chap. 10, and references therein).

In this Letter, we take advantage of ideas from quan-
tum electrodynamics and from quantum optics to analyze
radiative corrections received by laser-dressed atomic
states. This constitutes the rather fundamental field-
theoretic problem of the electron-to-vacuum interaction
with the electron being bound to an atomic nucleus and
being driven simultaneously by an additional strong ex-
ternal laser field [10]. From the viewpoint of QED, our
setup corresponds to the strong-coupling regime of the
atom to the laser field. This should be distinguished from
the strong binding (Coulomb) field limit of the Lamb
shift usually found in high-Z ions [6], from the radiative
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shifts of Volkov states [11], and from radiative corrections
in modified vacuum structures such as in photonic crys-
tals [12]. The dominant interaction in the system is the
coupling of the atom to the driving laser field which gives
rise to the atomic laser-dressed states. This interaction is
taken into account to all orders in the atom-laser coupling
within the rotating-wave approximation (RWA). Starting
from the natural dressed-state basis of the system, we
perturbatively calculate the self-energy corrections (as
we focus on the self-energy, we will use the terms
“Lamb shift” and ““self-energy”” interchangeably). Thus
we first incorporate the strong interaction with the laser
and treat the second-order shift due to the vacuum field in
a second step of the calculation. In this way we find that
the self-energy shift of the laser-dressed states clearly
deviates in a nontrivial manner from the usual S-matrix
results for atomic bare states. We further point out situ-
ations where the modified radiative corrections are also of
practical relevance.

The system under consideration is a monochromatic
laser field which couples near-resonantly to an electric-
dipole allowed transition |e) < |g) of a single atom. In a
typical quantum optical treatment in two-level, dipole,
and RWA (see [7], Chap. 10), the system Hamiltonian
may be approximated as (h = ¢c = €y = 1)

Hrwa =w, ) (gl + w,le){e| + wLa]JE ar,
+ g (af 1g) (el + ar le)(gl). (1)

The w; (i = e, g) are the energies of the respective atomic
states, wy, is the frequency of the laser field, a;, (a{) are
photon annihilation (creation) operators for the laser field
mode, and g; is a coupling constant which includes
known relativistic corrections [see [13], Eq. (27) or [14],
Eq. (18)].

The driving of the external laser field gives rise to a
resonance fluorescence spectrum which consists of an
elastic scattering part centered at the frequency of the
driving laser field and an incoherent part, which for
Q, > T (secular limit) splits up into three distinct peaks.
Here, ), =2g; +/n + 1 is the Rabi frequency of the
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driven transition which depends on the number of photons
n in the laser field mode and I is the decay rate of the
transition. The main peak of this Mollow spectrum is
again centered at the driving laser field frequency, while
the two other Peaks are shifted by the generalized Rabi
frequency + QU = +,/Q2 + A to higher and lower fre-
quencies, respectively, with A = w; — wg as the detun-
ing of the driving laser field (vg = @, — @,).

The dressed states [9] are the eigenstates of the com-
bined system of the atomic two-level system and the
driving laser field in RWA and may be written as

|(+, n)) = cosh, e, n) + sinb, |g, n + 1), (2a)

|(—, n)) = —sind, |e, n) + cos, |g, n + 1). (2b)

Here, |i, n) (i € {e, g}) denotes the state where the atom is
in the bare level i with n photons in the driving laser field
mode, and 6,, is the mixing angle defined by tan(26,) =
—,/A. The energies of these dressed states in RWA are
given by E.,=(n+1/2) oy + wg/2 * Qg’)/Z. The
Mollow spectrum may then be understood as originating
from transitions |[(%, n)) — [(=,n — 1)) among the
dressed states. As the driving laser field discussed here
is sufficiently intense, we replace (), le), and 6, by
their corresponding semiclassical entities €}, Oy, and 6 in
the following discussion.

The Hamiltonian JH  describes the interaction of the
atom with all modes but the laser field mode, and FH F
describes the electromagnetic field,

— +
He = Zwkak/\ak)v

kA

R = —qr- Eg, 3)
Here, g is the physical charge of the electron (¢> = 47«
where « is the fine-structure constant), and r is the
position operator. The electric field operator of the non-
laser modes is given by

Eg = Z Vo /2V) e, (k)ag, + ab].

kA#L

4

V is the quantization volume, €,(k) is a polarization
vector, and wy, ag,, and a;‘[ , are the frequency, the anni-
hilation, and the creation operator of the vacuum mode
with wave vector k and polarization A, respectively.

The second-order radiative self-energy shift arises
from two terms. First, we have the non-laser-field
radiation modes and resonant intermediate atomic states
(treated as dressed states within the RWA)

ALY = (=, m)| Hp(Ex, — H o) " Hil(E n)),
(52)

with H o, = Hrwa + Hg. Second, we consider off-
resonant intermediate states,

AL? = ((+,n)| HR(Ex, — H o) " Hil(£,n)), (5b)

where H  is given by H . under the replacement
Hrwa — Y i#ge@; 1), excluding the resonant states
le)., |g)-

It is natural to assume that in the limit of vanishing
laser intensity (g — 0 and vanishing detuning A — 0,
the Lamb shift of the dressed states should be equal to the
radiative shift we would expect from the usual bare-state
treatment of the Lamb shift [3,6]. Indeed, neglecting the
detuning and the Rabi frequency, the sum of the terms
(52) and (5b) leads to the following approximative (app)
result

ALED = 2% (7 0) In[(Za) 2]
' 3m
X {c0s26(e|53(r)|e) + sin26(g|6® (r)|g)}, (6)

and the shift AL™ of w_ is obtained by replacing
sinf < cosf in the above formula (Z is the nuclear
charge number, and m is the electron mass). This re-
sult may be rewritten as the expectation value
(=, n)|AVump()|(£, n)), in a potential [15,16] given by
AVigmy () = 4a(Za) In[(Za)~?16D(r) /(3 m?).

We now investigate the corrections to the shift of the
high- and low-frequency Mollow sidebands Aw. due to
Eq. (6) with respect to the lowest-order results

wy=E., —E_,_, w_=E_,—E;,~1. (]
We obtain
Aw, = AL®P — AL®P — A Lowe (8)

where Lyye = (e|AViample) — (glAViumplg) is the effec-
tive Lamb shift acquired by the bare states. Also, we
have Aw_ = —Aw,.

When we keep the terms linear in {dz and A in eval-
uating the matrix elements in Eqs. (5a) and (5b), we
obtain the following corrections AC. , to the leading-
order shift of the dressed states |(+, n)) given in Eq. (6)
(for a detailed derivation we refer the reader to [17]):

AC,, = —% In[(Za) %] #[cos?ﬁ(pz)e(ﬂl{ + A) +sin?0(p?), (Qg — A) + [(p)eel*(A cos(20) + Qgcos?(20))],  (9a)

AC_, = % In[(Za) 2] %[coszﬂ(f}g(QR + A) +sin?0{p?)(Qr — A) + [(P)egl*(Acos(20) + Qgcos?(26))].  (9b)

Here (p);; = (ilpl)) is the dipole matrix element, and (p?); = (j|p?|)) is the expectation value of the square of the
atomic momentum where |i) and |j) denote atomic bare states.
The additional shift to the high- and low-frequency Mollow sidebands w. due to Eqgs. (9a) and (9b), which we denote

by dw.+ in contrast to Aw., may be simplified to [17]
253601-2
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3

(10)

Here, £ = In[(Za) %], and C is dimensionless.
The Mollow sidebands are thus Lamb shifted in total
according to Egs. (8) and (10) by

wy—w, +Aw, +éw,
A Q2
O+ A ———Lyye ~ C——s
Az’ JO2 A2
= wp Q2 (1= O + (A — Lyye)? + O(Q2 A,
1D

It is highly suggestive to interpret the approximative
Lamb shift Aw. as generating, under the square root, a
specific term that effectively shifts the detuning A by an
amount that corresponds to the Lamb shift of the bare
transition, (wgr — wg + Lpge) < (A = A — L,.). The
appearance of the Ly, term is nontrivial within the
dressed-state formalism, although its presence could be
conjectured based on the evaluation of the detuning with
allowance for the “bare” (the ‘““usual’”’) Lamb shift of the
transition. The shift mediated by the C term in Eq. (11) is
effectively a radiative modification of the Rabi frequency.

We are led to define the fully dressed Lamb shift of the
two Mollow sidebands as

At — ¢<\/Q2(1 C O+ (A - Ly~ + A2>

:CL)L+

~Aw. +8w.. (12)

We now turn to the experimental verification of the
radiative corrections to the Mollow spectrum. A precision
measurement of the Mollow spectrum is required. The
atomic system under study should be described to very
good accuracy by the two-level approximation. Other-
wise, considerable further complications due to a multi-
level formalism would arise. A further prerequisite is a
frequency- and intensity-stabilized continuous-wave (cw)
laser tuned to the atomic resonance to allow the system to
evolve into the steady state.

We recall the explicit familiar three-peak Mollow
spectrum which describes the frequency-dependent in-
tensity spectrum of the incoherent fluorescence (secular
limit),

Sinc(@) = % [(

w— o)+ (0— o —Qp?+T13%
I _A_ }
_l’_
(a) - Wy, + QR)Z + ]__‘2,
Corrections beyond the secular approximation may be
expressed as a series in I'/Qg [17]. Modifications of the
Mollow spectrum due to modified decay rates such asin a
squeezed vacuum [18], via quantum interferences [19] as

253601-3

13)

well as via modifications in strong driving fields with a
Rabi frequency nonnegligible to that of the transition
frequency [20] have been discussed in the literature.

The generalized Rabi frequency in this formula
becomes

O =V T AT = 02 (1= O + (A~ Ly, (14)

in order to take care of both the bare Lamb shift and the
radiative shift of the Rabi frequency, and the parameters
in (13) read:

. Q° Q4
Alre = L A
O 403 (QF + AY? © 8003 +4Y)
02 +2A2 302 +2A2
=5 Bl W
R R

Here, T is the decay width of the upper atomic level |e)
which also determines the width of the Mollow sidebands.
Let us consider a situation with vanishing detuning A
(this implies ) = Qy). Further, we define the ratio & =
Q/I'. The width of the Mollow sidebands I'. is of the
order of I' according to (15). The radiative Rabi-frequency
correction to the Mollow sidebands d - is of the order of
C Q [see Eq. (10)]. We compare 6 w - with the width of the
Mollow sideband peak; this leads to the following order-
of-magnitude estimate (“~’) for the “shift-to-width”
ratio ry:

—~hC. (16)

The Bloch-Siegert shift 6ggw+ (see [21]) of the dressed
states is a second-order effect in the atom-laser interac-
tion which at A = 0 shifts the dressed states by a fre-
quency of the order of Q3/w? [20] (a formula valid for
arbitrary detuning is contained in [17]). It is perhaps
worth noting that according to [8], the Bloch-Siegert
correction could therefore be interpreted as a stimulated
radiative correction. The ratio r, of the radiative shift
dw+ of the generalized Rabi frequency to the Bloch-
Siegert shift is

ow -+ cQ

_ _ _ 0w} C  In[(Za)™?]
5]33(1)4_r 93/60% QZ

= h2.
a(Za)?

)

We perform order-of-magnitude estimates based
on the Za expansion [22]. The laser frequency
(= atomic transition frequency) is w; ~ (Za)’>m, the
decay width is T ~a(Za)*m, and C~
a(Za)* In[(Za) ] is defined in Eq. (10). With & = 1000
and C~ a(Za)’In[(Za)™?]~107° (@ Z=1), we
obtain r; ~ 1073 and r, ~ 10. A resolution of the peak
of a Lorentzian to one part in 10° of its width is fea-
sible as well as the theoretical description of the
Bloch-Siegert shifts to the required accuracy [17]. Line-
shape corrections [23] are much smaller in mag-
nitude than the dressed radiative corrections themselves.
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FIG. 1. One of the Mollow sidebands in Eq. (13) without

any Lamb shifts (dashed line), corrected by the bare Lamb
shift according to Eq. (6) (solid line), and corrected by the
fully dressed Lamb shift according to Eq. (12) (dash-dotted
line). (b) is a magnification of (a) with x; = 1008.64 T, x, =
1008.67 T', y; = 0.05062, and y, = 0.05068, where the verti-
cal lines mark the line centers of the two Lorentzians. The
parameters chosen are for the hydrogen 1S-2P,/, transi-
tion with 2 = 1000, A =50I', I' = 99.8 MHz, and L. =
—8185.652 MHz.

The recently developed continuous-wave (cw)
Lyman-« source [24] was originally designed to cool
antihydrogen. While not the only candidate for a prospec-
tive measurement of the laser-dressed shifts, we mention
here hydrogen as a standard system for Lamb-shift mea-
surements and the 1S-2P transition as an example for a
good realization of the two-level approximation. If we
assume a tightly focused laser beam (limit on the beam
waist is of the order of the laser wavelength A), then a
calculation shows that the required Lyman-a power of
340 uW for an h parameter of 1000 as in Fig. 1 is less
than 103 times larger than the current maximum power of
20 nW [24]. Ionization rates are small: At intensity
340 uW/(mA?), the atom undergoes roughly 5 X 10°
Rabi oscillations before ionization [25]. Considerable
progress toward the required laser power appears to be
within reach for the near future [26]. These estimates are
relevant for a measurement that strives to verify the
radiative modification of the Rabi frequency [C term in
Eq. (12)]; an experimental verification of the Ly, term,
which requires far less experimental precision [see
Fig. 1(a)], would be of considerable theoretical interest
in its own right.

In summary, we find that our calculated Lamb shift of
laser-dressed atomic states is nontrivially different from
that obtained via conventional approximate treatments
where the perturbative quantum electrodynamic interac-
tion is evaluated prior to the exact quantum optical cou-
pling with the laser field. The Lamb shift is modified [see
Eq. (12)] even though the highly occupied laser mode, to
a very good approximation (i.e., ignoring light-by-light
scattering) does not interact with the other vacuum modes
which are responsible for the Lamb shift. The radiative
corrections amount to a change of the detuning corre-
sponding to the Lamb shift of the bare transition, and a
radiative modification of the Rabi frequency, both of
which may be verified experimentally.
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