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Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory
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The collinear factorization properties of two-loop scattering amplitudes in dimensionally regulated
N = 4 super-Yang-Mills theory suggest that, in the planar ("t Hooft) limit, higher-loop contributions
can be expressed entirely in terms of one-loop amplitudes. We demonstrate this relation explicitly for
the two-loop four-point amplitude and, based on the collinear limits, conjecture an analogous relation
for n-point amplitudes. The simplicity of the relation is consistent with intuition based on the anti—de
Sitter/conformal field theory correspondence that the form of the large-N,. L-loop amplitudes should be
simple enough to allow a resummation to all orders.
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Four-dimensional quantum field theories are extremely
intricate, and generically have complicated perturbative
expansions in addition to nonperturbative contributions
to physical quantities. Gauge theories are interesting in
that numerous cancellations occur. This renders perturba-
tive computations more tractable, and their results sim-
pler, than one might otherwise expect. The Maldacena
conjecture [1] implies that a special gauge theory is
simpler yet: the 't Hooft (planar) limit of maximally
supersymmetric four-dimensional gauge theory, or N = 4
super-Yang-Mills (MSYM) theory. The conjecture states
that the strong coupling limit of this conformal field
theory (CFT) is dual to weakly coupled gravity in five-
dimensional anti—de Sitter (AdS) space. The AdS/CFT
correspondence is remarkable in taking a seemingly in-
tractable strong coupling problem in gauge theory and
relating it to a weakly coupled gravity theory, which can
be evaluated perturbatively. There have been multiple
quantitative tests of this correspondence, using observ-
ables protected by supersymmetry (see, e.g., Ref. [2]).
Because of the different domains of validity of coupling
expansions on the gauge and gravity sides, quantitative
comparisons involving unprotected quantities rely at
present on an additional expansion parameter, such as
in the large-J (“spin”) limit of Berenstein-Maldacena-
Nastase operators [3,4].

In this latter context, the AdS/CFT correspondence can
be used to motivate a search for patterns in the perturba-
tive expansion of planar MSYM theory. Intuitively, ob-
servables in the strongly coupled limit of this theory
should be relatively simple because of the weakly coupled
gravity interpretation. Yet infinite orders in the perturba-
tive expansion, as well as nonperturbative effects, con-
tribute to the strong coupling limit. How might such a
complicated expansion organize itself into a simple re-
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sult? For quantities protected by supersymmetry, non-
renormalization theorems, or zeros in the perturbative
series, are one possibility. Another possibility, for unpro-
tected quantities, is some iterative perturbative structure
allowing for a resummation. There have been some hints
of an iterative structure developing in the correlation
functions of gauge-invariant composite operators [5],
but the exact structure, if it exists, is not yet clear.

Amplitudes for scattering of on-shell (massless)
quanta—gluons, gluinos, etc.—are examples of particu-
lar interest because of their importance in QCD applica-
tions to collider physics. Although the Maldacena
conjecture does not directly refer to on-shell amplitudes,
we expect the basic intuition, that the perturbation
expansion should have a simple structure, to hold none-
theless. Indeed, the simplicity of one- and two-loop am-
plitudes in MSYM has allowed their computation to
predate corresponding QCD calculations [6,7].

Perturbative amplitudes in four-dimensional massless
gauge theories are not finite, but contain infrared singu-
larities due to soft and collinear virtual momenta. The
divergences can be regulated using dimensional regulari-
zation with D = 4 — 2e. The resulting poles in € begin at
order 1/€~ for L loops, and are described by universal
formulas valid for MSYM, QCD, etc. [8]. To preserve
supersymmetry we use the four-dimensional helicity
scheme [9] variant of dimensional regularization, which
is a close relative of dimensional reduction [10]. The
infrared divergences turn out to have precisely the iter-
ative structure we shall find in the full N = 4 amplitudes;
thus, they provide useful guidance toward exhibiting such
a structure.

Infrared divergences generically prevent the definition
of a textbook S matrix in a nontrivial conformal field
theory such as MSYM. For the dimensionally regulated S
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matrix elements we discuss, the regulator explicitly
breaks the conformal invariance. However, once the
universal infrared singularities are subtracted, the four-
dimensional limit of the remaining terms in the ampli-
tudes may be taken, allowing an examination of possible
connections to the Maldacena conjecture.

These finite remainders are relevant for computing
“infrared-safe’ observables in QCD, in which the diver-
gent parts of virtual corrections cancel against real-
radiative contributions (not discussed here) to produce
finite perturbative results [11]. The finite remainders
should also be related to perturbative scattering matrix
elements for appropriate coherent states (see, e.g.,
Ref. [12]). The connection to the S matrix for the true
asymptotic states of the theory, such as the hadrons of
QCD, is, of course, nontrivial.

In MSYM, there are other hints that higher-loop am-
plitudes are related in a simple way to the one-loop ones.
In particular, the integrands of the amplitudes (prior to
evaluation of loop-momentum integrals) have a simple
iterative structure [7]. Furthermore, the one-loop ampli-
tudes have a relatively simple analytic structure, which
has allowed their determination to an arbitrary number of
external legs for configurations with maximal helicity
violation [13] and up to six external legs for all helicities
[14]. Unitarity then suggests that higher-loop amplitudes
may also have a relatively simple analytic structure.

In this Letter we present direct evidence that this
intuition is correct for the planar amplitudes of MSYM.
A number of powerful techniques are available to com-
pute them. These include the unitarity-based method
[7,13,14], recently developed multiloop integration meth-
ods (see Ref. [15] and references therein), and the impo-
sition of constraints from required behavior as the
momenta of two external legs become collinear [16].
Here we shall express the explicit form for the four-point
N = 4 amplitude at two loops, in terms of the one-loop
amplitude, using previous results [7,17]. In addition,
we present the two-loop splitting amplitude in planar
MSYM, computed elsewhere, which summarizes the be-
havior of amplitudes as the momenta of two legs become
collinear. We use the latter to provide evidence that the
relationship between the two-loop and one-loop ampli-
tudes continues to hold for an arbitrary number of exter-
nal legs.

The leading-N, contributions to the L-loop SU(N,)
gauge-theory n-point amplitudes may be written as

—€y 52 L
./’Zlqu) — g”2|:26(477_)§——15\]6 j| ZTI(Taﬂ(l)TaP(Z) cee Taﬂ(n))
p

X AP (p(1), p(2), ..., p(n)), (1)

where the sum is over noncyclic permutations of the
external legs, and we have suppressed the momenta and
helicities k; and A;, leaving only the 1ndex i as a label.
The color ordered amplitudes A (1 2,...,n) satisfy
simple properties as the momenta of two color-adjacent
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legs k,, k;, become collinear,
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The index [ sums over the dlfferent loop orders of con-
tributing splitting amplitudes Spht % » While A sums over
the helicities of the fused leg kp = —(k, + k), where z is
the momentum fraction of k,, k, = —zkp. The two-loop
version of this formula is sketched in Fig. 1. The splitting
amplitudes are universal and gauge invariant. Formula (2)
provides a strong constraint on amplitudes; for example,
it has been used to fix the form of a number of one-loop
n-point amplitudes [13,14,16].

At tree level, the splitting amplitudes Spht are the
same in MSYM as in QCD. Supersymmetry Ward iden-
tities [18] relate different helicity amplitudes in MSYM,
implying that the loop splitting amplitudes may be ex-
pressed in terms of the tree-level ones [13],

split") (1M1, 2%) = r{Psplit, (14,2%),  (3)

where rg = ry W(e;z, s = (k; + ky)?) is independent of
A, Ay, A,. Similarly defining the scattering amplitude ra-

tios M;L)(e) = AS,L)/Aﬁ,O), we obtain in collinear limits
M (€)= M (e) + r{(e), )
MP(e) = M2 (&) + (MY (&) + r{(e). (5

The N = 4 one-loop splitting amplitudes have been
calculated to all orders in € [19], with the result

Aieas =3 (5 ) e ()

+2 Z EZkHLizkH(l__ZZ)} (6)

k=0

where Li, is the nth polylogarithm,

e’ T(1 + e)I'*(1 — €)
2 I(1—-2¢

¢r= @)
and vy is Euler’s constant.

We have calculated the two-loop, leading-N,, N = 4
splitting amplitudes through O(e) using the method of
Ref. [20] with the result

FIG. 1. The collinear factorization of a two-loop amplitude.
In each term in the sum, the left blob is a splitting amplitude,
and the right blob an (n — 1)-point scattering amplitude.
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ez s) =10 (€29 + fler ez 5),  (®)

with fle)=[y(1 —e) = p(1)]/e = —({H + L3e +
L€ + -+ 0), (x) = (d/dx) Il (x), (1) = —.

The infrared singularities of leading-N, MSYM at one
and two loops can be extracted from more general studies,
notably Ref. [8]. At one loop, the divergences are given by

e

N Z(

2 €
C(e) = T ) ©)
i+1

The two-loop divergences, in the four-dimensional hel-
icity scheme, are [8,21]

MO(e) = ar{—§<’_‘—z>e— 32<_) +<“72>[ ST =P+ 7]+ 2€<Li3(x) ~ XLi()

t

(0 =3 (@@ + R @)
e 'I'(1 — 2¢
~ L+ ega)¥c<n“(ze). (10)
I'(1—e)
The finite remainder is defined by subtraction,
Fi'(e) = M (e) = G (e). (11)

Note that C(nL)(e) contains some finite terms as well.

We now present evidence that through O(€°) the two-
loop planar amplitudes are related to one-loop ones via

1 5
MP(€) = (M) () + (M 2€) =3 & (12)

Note the similarity of our ansatz to the two-loop splitting
amplitude (8), as well as to the infrared subtraction (10).

The one-loop four-point amplitude in MSYM [6] is
given in terms of the scalar box integral depicted in
Fig. 2(a). Expanding the result in € yields

X3 7
-2 -Zx
)
X+ Xy Xx°y?
- 2€2<Li4(x) + YL13 (X) - 7L12(}C) 8 T + 4

where s = (ky + ky)?, t=(ky + k)>, u=—s—1t, x =
—s/u, y= —t/u, X = Inx, and Y = Iny. For the four-
point case, the € — 0 limit of the finite remainder (11) is

E)3
— )+ =
—t 2

In Ref. [7] the two-loop N = 4 amplitude was pre-
sented in terms of a double-box scalar integral depicted
in Fig. 2(b), plus its image under the permutation s < .
Reference [17] provides the explicit value of this integral,
through O(€°), in terms of polylogarithms. Inserting this
value, we obtain precisely the result (12) with n = 4. The
equality requires the use of polylogarithmic identities
and nontrivial cancellation of terms between the two
integrals. Terms through O(e?) in M contribute at
O(e%) in MY, since they can multiply 1/6 terms.

Subtracting the two-loop infrared divergence given in
Eq. (10) from our calculated expression yields

1
FP0) = 5 n’ (14)

(a) (b)

FIG. 2. The scalar integral functions appearing in the (a) one-
and (b) two-loop four-point N = 4 amplitudes.
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— (1)

- §[F4 (O)]2 - ? 54, (15)

expressed in terms of the one-loop finite remainder (14).
For n = 5 legs, we examine the properties as external

momenta become collinear, using Eq. (2). Applying the

one-loop collinear behavior (4) to the ansatz (12), we

have
M2 = S IM (0 + P (OF

+ @MY, 00) + AR -4, (16)
which is consistent with the required two-loop collinear
properties (5), using Eq. (8). Although severely con-
strained, amplitudes are not uniquely defined by their
collinear limits [13]. Thus, Eq. (12) remains unproven
for n = 5. The direct computation of the two-loop five-
point function seems feasible, and would provide an
important test of the ansatz.

We investigated two potential extensions of the relation
(12), each with negative results.

(1) We examined the nonplanar extension by computing
the subleadmg color two-loop finite remainders, analo-
gous to F )(0). These terms contain polylogarithms, and
hence cannot be written in terms of one-loop finite re-
mainders, unlike the planar Eq. (15). Thus, the nonplanar
terms do not appear to have a structure analogous to
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Eq. (12), in line with heuristic expectations from the
Maldacena conjecture.

(2) For the four-point amplitude, we find that Eq. (12)
is not satisfied at O(e), due to polylogarithmic obstruc-
tions. Hence, the relation holds only as D — 4, i.e., where
the theory becomes conformal.

The possibility of resumming perturbative expan-
sions in MSYM may also have relevance for QCD. QCD
may be viewed as containing a ‘“‘conformal limit” (e.g.,
MSYM) plus conformal-breaking terms. This perspec-
tive has had practical impact on topics ranging from the
Crewther relation to exclusive processes [22]. We note that
N = 4 amplitudes can be obtained directly from QCD
amplitudes by adjusting the number and color of states
circulating in the loop: starting from the two-loop QCD
amplitudes of Ref. [21] and substituting for the “‘spin
index dimension”” D; = 4 — 2edz — 10 and for the color
Casimirs Cp — Cy, TgNy — 2C,, one obtains the two-
loop MSYM amplitudes. (These modifications effectively
give D = 10, N = 1 super-Yang-Mills theory, truncated
to D=4, which is N =4 super-Yang-Mills theory.
See Eq. (6.5) of Ref. [21] for an analogous conversion to
D = 4, N = 1 super-Yang-Mills amplitudes.)

A number of open questions deserve further study.
At two loops, the N = 4 planar ansatz should be checked
for at least the five-point case. At higher-loop order, the
intuition described in the introduction suggests a con-
tinuation of the iterative structure found at two loops,
possibly enabling a resummation of perturbative contri-
butions. Thus, we expect that higher-loop planar N = 4
amplitudes will be “polynomial” functions of the one-
loop amplitudes. Indeed, the known form of three-loop
infrared divergences [8] provides some confirmation of
this. Recent advances should make possible explicit
evaluation of the leading-color three-loop four-point am-
plitude, using known expressions for the integrand [7].
[One of the two three-loop integrals needed has already
been computed through O(e’) in terms of generalized
polylogarithms [23].] One would also like to identify a
symmetry (presumably related to superconformal invar-
iance) and associated Ward identity responsible for re-
stricting amplitudes to be iterations of the one-loop
amplitude; recall that the relation between the two-loop
and one-loop amplitudes holds only near D = 4 where
the theory is conformal. We are optimistic that an under-
standing of the amplitudes of N = 4 super-Yang-Mills
theory will lead to new insight into consequences of the
AdS/CFT correspondence.
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