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Radiative Electroweak Symmetry Breaking Revisited
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In the absence of a tree-level scalar-field mass, renormalization-group methods permit the explicit
summation of leading-logarithm contributions to all orders of the perturbative series within the
effective potential for SU�2� � U�1� electroweak symmetry. This improvement of the effective
potential function is seen to reduce residual dependence on the renormalization mass scale. The all-
orders summation of leading-logarithm terms involving the dominant three couplings contributing to
radiative corrections is suggestive of a potential characterized by a plausible Higgs boson mass of
216 GeV. However, the tree potential’s local minimum at � � 0 is restored if QCD is sufficiently strong.
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Over 30 years ago, Coleman and Weinberg [1] demon-
strated how spontaneous symmetry breaking may occur
through radiative corrections to a conformally invariant
Lagrangian in which no quadratic mass term appears.
Such symmetry breaking, in which the scalar-field vac-
uum expectation value h�i is the only source of scale, is of
particular relevance for the spontaneous breakdown of
SU�2� � U�1� electroweak symmetry, which necessarily
requires a mechanism within an embedding theory to
keep any such quadratic mass term minimally contami-
nated by the unification mass scale. The absence of
such a mass term implies that this mechanism is exact
[2]. We emphasize that such a mechanism, whether exact
or nearly so, is a necessary component of the standard
model, though the nature of this mechanism (possibly
conformal invariance) remains unknown. In the absence
of an explicit scalar-field mass term (i.e., the ‘‘exact
mechanism’’), the one-loop (1L) effective potential for
SU�2� � U�1� gauge theory is given by [1]
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There are four distinct coupling constants appearing in
Eq. (1): the SU�2� coupling constant g2, the U�1� coupling
constant g0, the t-quark Yukawa coupling constant gt, and
the quartic scalar-field self-interaction coupling constant
�. The radiative symmetry-breaking scenario of Ref. [1],
which preceded the discovery of the massive top quark,
led to a value for � proportional to g42 and a scalar-field
mass of order 10 GeV. The presence of a large Yukawa
0031-9007=03=91(25)=251601(4)$20.00 
couplant [g2t ’ 1:0 � g22; g
02] spoils this scenario; the

O�g2t � value of � required for radiative symmetry break-
ing would be so large that subsequent leading-logarithm
terms [e.g., �3�4ln2��2=�2�] would be too large to
neglect.

In the present work, we explicitly sum all such leading-
logarithm terms within the full perturbative series for
the effective potential [3] to examine the viability of
radiative electroweak symmetry breaking. We find the
potential is minimized for a Higgs mass of 216 GeV,
and observe some evidence that this value may be stable
after including contributions from subsequent-to-leading
logarithms.

If we denote the dominant standard-model couplants
as x � g2t =4�2, y � �=4�2, and z � g23=4�

2 [QCD con-
tributes to leading logarithms past one-loop order],
which are much larger than corresponding couplants
for g2, g0, and non-t-quark Yukawa couplings, this series
is of the form Veff � �2�4

P
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nykz‘Lp, where
L��� � ln�2���=�2�. The leading logarithms in this
series are those terms one degree lower in the power of
the logarithm L than in the aggregate power of the cou-
plants fx; y; zg,
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The series SLL is determined entirely by one-loop con-
tributions to the renormalization-group (RG) equation,
i.e., by those contributions that either lower the power of
L by one or raise the aggregate power of the couplants by
one [2,4]:
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In Eq. (3), the coefficients of @
@x , @

@y , @
@z are, respectively,

the one-loop beta functions for x; y; z (where �x � � dx
d� );

the final term in Eq. (3) is 4 times the one-loop scalar-
field anomalous dimension. For example, the leading co-
efficients C0;1;0 � 1, C1;0;0 � C0;0;1 � 0, follow from the
��4=4 tree-order potential. Upon substitution of Eq. (2)
into Eq. (3), one easily sees that C0;2;0 � 3, that C2;0;0 �
�3=4, and that the remaining four degree-2 coefficients
Ci;j;2�i�j equal zero, leading to a recovery of the f�2; g2t g
contributions to the potential (1).

We find it convenient to express the series (2) in
the form
251601-2
SLL � yF0�w; �� �
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where w � 1� 3yL and � � zL, and where
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By using Eq. (3) to obtain sequential partial differential
equations relating F0 � 1=w to F1�w; �� and F2�w; ��, we
are able to solve explicitly for these quantities. For p � 3
one can show from Eq. (3) that
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where fp;k � 0 when k < 0 or k > p� 1, and where fp;k�0� is finite.
We now examine possible radiative spontaneous symmetry breaking for the RG-improved effective potential

Veff��� � �2�4�SLL � K�, where K is a finite �4 counterterm coefficient. As in Ref. [1], we choose� � h�i � v (L �
ln�2�v�=v2�), in which case V0

eff�v� � 0. The countertermK facilitates the fourth-derivative renormalization condition
V�4�
eff �v� � V�4�

tree�v� � 24�2y �� 6��. For any one-loop effective potential of the form V�1L�
eff ��� � �2�4y� "L� K�,

this fourth-derivative condition ensures that K � �25"=6, as in Eq. (1). For our RG-improved potential, we find it
convenient to expand SLL in powers of the logarithm L:
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We then obtain from Eqs. (3) and (6) an exact determination of terms up to O�L4� within Eq. (7):
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The procedure for obtaining the Higgs mass, as
described below, is insensitive to any terms in the
leading-logarithm series (7) past O�L4�. Consequently,
Eqs. (8)–(11) are sufficient to determine the entire
leading-logarithm contribution to the scalar-field mass
to all (contributing) orders in fx; y; zg. These equations
are also obtainable via the method-of-characteristics
methodology of Bando et al. [5], which has been im-
plemented in conventional (nonradiative) standard-
model symmetry breaking by Quiros and collaborators
[6]. The conditions V 0

eff�v� � 0 and V�4�
eff �v� � 24�2y,
respectively, imply that y � �B=2� K and K �

�256 B� 35
3 C� 20D� 16E�. Given the phenomenologi-

cal standard-model values for the vacuum expectation
value v � 246 GeV, the t-quark Yukawa couplant x�v� �
1=4�2, the QCD couplant z�v� � &s�v�=� � 0:0329, as
evolved from &s�Mz� � 0:120 [7], we find these con-
straints taken together constitute a degree-5 equation
for the scalar-field self-interaction couplant y. The
only real positive-y solution that yields a positive second
derivative (hence, a local minimum) is y � 0:0538. Once
251601-2



FIG. 1. Residual scale dependence of the standard model
effective potential with (upper three curves) and without
(lower three curves) summation of leading logarithms, as
discussed in the text. For the resummed curves, the solid line
represents � � v, the dashed line represents � � v=2, and the
dotted line represents � � 2v. For the unsummed curves, the
dash–double-dotted curve represents � � v, the dash–single-
dotted curve represents � � v=2, and the dashed curve repre-
sents � � 2v.
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y is determined, then B, C, D, and E are also numeri-
cally determined. To present order, we can approxi-
mate the Higgs field propagator pole with the second
derivative of the effective potential at � � v. One then
finds m2

� � V00
eff�v� � 8�2v2�B� C� � �216 GeV�2.

In assessing the viability of this result, it is of interest
to consider what one would similarly obtain from the
one-loop effective potential augmented by a �2�4K
counterterm. Such a potential is seen to correspond to
Eq. (7) with B as given by Eq. (8), but with C � D �
E � 0. The conditions V 0�v� � 0, V�4��v� � 24�2y are
then seen to lead to a solution y � 0:093, m� �
350 GeV. Such a mass is well outside the O�200 GeV�
bound on m� from corrections to electroweak theory [7].
Moreover, it is easy to demonstrate that this value for y is
too large to be meaningful. The contributions of y alone
to the � function for its own evolution correspond to the
� function of an O�4� symmetric scalar-field theory,
which is known to five-loop order [8]:
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� 47 975y6 � . . . : (12)

If y � 0:093, terms of this series increase after the second
term, indicative of a failure to converge. By contrast,
terms of the series (12) decrease if y � 0:0538. Similar
results characterize this same scalar-field theory’s anoma-
lous dimension, whose terms decrease monotonically
when y � 0:0538, but fail to do so when y � 0:093. Of
course, it is of greater interest to estimate possible cor-
rections to our result to two-loop order. For our parameter
values x � 0:0253, y � 0:0538, z � 0:0329, the two-loop
contributions to the standard-model beta functions and
anomalous scalar-field dimension provide corrections no
larger than 17% of their one-loop counterparts. This
provides us with further confidence that the 216 GeV
Higgs mass prediction will be stable upon summation of
subsequent next-to-leading logarithms.

In Fig. 1 we compare the residual scale (�) dependence
of Veff��� � �2�4�SLL � K� obtained via Eqs. (8)–(11)
to that of the one-loop effective potential discussed in the
preceding paragraph. Such dependence in both potentials
occurs explicitly through L��� and implicitly through
couplants whose one-loop evolution in � is anchored to
the� � v initial values given above [e.g., x�v� � 1=4�2].
The K�4 counterterms in both potentials are each as-
sumed to be RG invariant [K�v��4�v�], since the sublead-
ing logarithm contributions ultimately devolving from
such terms are uncontrolled by Eq. (3). For � �
fv=2; v; 2vg, the curves exhibit the dependence of the
potentials on the RG-invariant initial value ��v� for the
evolution of���� [��=��d�=d� � �3x���=4]. Figure 1
shows that summation of leading logarithms substan-
tially reduces the residual scale dependence of the effec-
tive potential. Moreover, if we assume such scale
251601-3
dependence to be indicative of next-order corrections,
we can expect only modest departures from the m� �
216 GeV prediction at � � v: m� varies from 208 GeV
at � � v=2 to 217 GeV at � � 2v. We find such uncer-
tainties in m� to dominate over much smaller ones
deriving from (standard-model) uncertainties in the cou-
plant values x�v� and z�v�. We have also verified by
numerical calculation of the RG equations that the
method-of-characteristics methodology of Bando et al.
[5,6] yields the same results for the effective potential and
the Higgs mass to within a value of 0.2%.

Note also that the scalar-field mass of order 216 GeV
we obtain from the aggregate contribution of leading
logarithms to the purely radiative breakdown of SU�2� �
U�1� electroweak symmetry is accompanied by a scalar-
field interaction couplant y � 0:0538 substantially larger
than that anticipated from conventional spontaneous
symmetry breaking (deriving from a potential with an
initially negative quadratic term), in which a 216 GeV
Higgs particle would necessarily correspond to a value
y � �=4�2 � m2

�=8�
2h�i2 � 0:0097. If electroweak

symmetry breaking is purely radiative, then y-sensitive
processes such as the W�W� ! ZZ scattering cross
section [9] will necessarily be larger than anticipated
from conventional spontaneous symmetry breaking.
Consequently, if an O�200 GeV� Higgs was discovered,
251601-3
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a clear signal of radiative symmetry breaking would be a
corresponding order-of-magnitude-or-more enhancement
of "�W�W� ! ZZ� over the value expected from such a
Higgs mass.

One of the motivations for summing leading loga-
rithms is to ascertain the negative large-logarithm behav-
ior of the effective potential, behavior corresponding to
the zero-field limit of the potential. We do not consider
positive large-logarithm behavior because of the inter-
vening Landau singularity at w � 0 [Eqs. (4) and (5)],
corresponding to ��v� � 22v [10]. When jLj is very
large, we find that yF0 ! �1=3L, xF1 ! 2�x=z�=L, and
x2LF2 ! �3�x2=z2�=2L. The large-jLj behavior of sub-
sequent terms in the series (4) can be extracted by noting
that the first term on the right-hand side of Eq. (6) domi-
nates the second term when the magnitude of ��� zL� is
large, and that Fp�w; �� �

Pp�1
k�0 fp;k��� in this large-jLj

limit �w�1
w � � 1�. One then finds after a little algebra

that when j�j is large,�
�7�2=2�

d
d�

� 4p�
�
Fp �

9p� 21

4
Fp�1; p � 3:

(13)

In the large j�j limit, we find that F2 �
P

3
k�0 f2;k��� �

��3=2���2. Equation (13) implies that Fp � fp�
�p,

where the numerical factors fp follow from f2 � �3=2
via the recursion relation fp � �9p� 21�fp�1=2p. Note
that xpLp�1Fp�w; �� � �xz�

pfp=L in the large-jLj limit;
each term in the series (4) is inversely proportional to L
when jLj is large. Moreover, if �x=z�< 2=9, the above
recursion relation for fp can be utilized to obtain the
closed form series summation SLL ��� 13L��1�

9x
2z�

4=3.
For sufficiently strong QCD, this result implies that a
standard-model effective potential based upon a mass-
less tree potential exhibits a local minimum, rather
than a maximum, at � � 0 (i.e., L! �1). Such a
conclusion, however, does not follow if x=z is outside
its radius of convergence (i.e., if x=z > 2=9), as is the
case for the empirical standard model [x�v� ’ 1=4�2,
z�v� � &s�v�=� ’ 0:033].

Recent work [11] based upon Padé approximants con-
structed from the QCD �-function series suggests for up
to five light flavors that the QCD couplant may exhibit
the same double-valued behavior known to characterize
N � 1 supersymmetric Yang-Mills (SYM) theory, in
which coexisting strong-couplant and (asymptotically
free) weak-couplant phases evolve toward a common
infrared attractive point [12]. If the strong phase is suffi-
251601-4
ciently strong (x=z < 2=9), one can envision a scenario in
which the � � 0 local minimum of preserved SU�2� �
U�1� symmetry is upheld by the strong phase of QCD, but
is transformed into a symmetry-breaking minimum at
� � v if QCD is in its weak phase. Since for the latter
case the minimum at� � v [V�v�< 0] is deeper than the
� � 0 [V�0� � 0] minimum occurring when QCD is in
its strong phase, the weak phase of QCD is seen to be the
preferred one. Thus, if QCD is characterized by two
coexisting phases, as is the case for SYM [12], the asymp-
totic freedom of QCD may be linked to the radiative
breakdown of electroweak symmetry.
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