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Spectroscopic Insensitivity to Cold Collisions in a Two-State Mixture of Fermions
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We have experimentally demonstrated the absence of spectroscopic resonance shifts in a mixture of
two interacting Fermi gases. This result is linked to observations in an ultracold gas of thermal bosons.
There, the measured resonance shift due to interstate collisions is independent of the coherence in the
system, and twice that expected from the equilibrium energy splitting between the two internal states in
a fully decohered cloud. We give a simple theoretical explanation of these observations, which elucidates
the effect of coherent radiation on an incoherent mixture of atoms.
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tors of 2’’ [3–6]. More recently, Harber et al. performed
Ramsey spectroscopy in a two-component, thermal gas of

tial overlap between atoms in different states grows and
mean-field energy density builds up:
The coherence properties of light and matter are in-
timately connected with the quantum statistics of the
constituent particles. One quantitative measure of the
coherence in a system is the two-particle correlation
function at zero distance, g�2�, which measures the proba-
bility that two particles are simultaneously detected.
Intensity fluctuations in the incoherent light emitted by
a light bulb lead to photon ‘‘bunching,’’ making this
probability twice higher than in the coherent light of a
laser. Identical fermions on the other hand exhibit ‘‘anti-
bunching,’’ making such a probability zero.

Interactions in ultracold atomic gases crucially depend
on the value of g�2� [1]. The reason is that s-wave scatter-
ing relies on particles overlapping in real space. The
interaction energy in a many-body system is determined
by coherent collisions, for which the outgoing and the
incoming two-particle states are identical. Under this
constraint, the two colliding particles can at most do
two things—either preserve their momenta, or exchange
them.We can thus distinguish four cases: (i) Two identical
bosons in a thermal gas can collide in both ways, corre-
sponding to g�2� � 2. (ii) Two atoms in a Bose-Einstein
condensate (BEC) have the same momenta and cannot
undergo the exchange interaction. Here g�2� � 1. (iii) Two
distinguishable particles, fermions or bosons, also cannot
exchange their momenta because that would make the
outgoing state different from the incoming one. Again,
g�2� � 1. (iv) Two identical fermions cannot collide at all,
so g�2� � 0. In all cases, the mean-field energy of a par-
ticle with mass m is given by g�2��4� �h2=m�an, where a is
the s-wave scattering length, and n is the density of atoms
it interacts with.

Mean field energies and therefore g�2� can be measured
spectroscopically. In experiments on ultracold hydrogen,
mean-field shifts of the 1S-2S two-photon transition were
used to prove the existence of a BEC [2]. However,
quantitative interpretation of the shifts led to a vivid
theoretical discussion about the coherence related ‘‘fac-
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87Rb bosons to measure g�2� in the interstate collisional
shift [7]. Their measurements yielded g�2� � 2, indepen-
dent of the degree of coherence between the two states.
The spectroscopic results thus seemed to correspond to
the case of all particles being in an identical coherent
superposition of the two internal states, even though the
binary mixture was partially decohered and should have
had a mean-field energy corresponding to 1< g�2� < 2.
The authors commented on this mystery [8]: ‘‘it is a
pleasure to note that a two-level system can still yield
surprises, 75 years after the advent of quantum mechan-
ics.’’ The mystery can be formally resolved using a quan-
tum Boltzmann equation [9–13].

Here, we experimentally address the relation between
coherence and spectroscopic measurements in a binary
mixture of ultracold fermions. We demonstrate that shifts
of spectroscopic lines are absent even in a fully decohered
binary mixture, in which the particles are distinguish-
able, and the many-body mean-field energy in the system
has developed. We theoretically show that this is a direct
consequence of the coherent nature of the radiofrequency
(rf) excitation, which, in general, leads to a final state
with g�2� different from the initial state.

Our calculation intuitively explains both our results for
fermions, and the results for bosons of Ref. [7].

In a recent paper [14], we demonstrated the absence of
mean-field ‘‘clock shifts’’ in a coherent two-state super-
position of 6Li fermions. In this case, rf spectroscopy was
performed on a gas prepared purely in one internal state.
Since an rf pulse acts as a rotation in the two-state Hilbert
space, all the atoms stayed in an identical (superposition)
state and could not interact. As long as the fermionic
atoms were indistinguishable, g�2� � 0, and the resonance
was thus found to be unperturbed at �0 � �E12=h�, where
E12 is the energy difference between the internal states j1i
and j2i.

However, once decoherence sets in, for example due to
inhomogeneous magnetic fields across the cloud, the spa-
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E int�r� � g�2�V12n1�r� n2�r�; V12 �
4� �h2

m
a12; (1)

where n1 and n2 are the local densities of particles in
states j1i and j2i, and a12 is the interstate s-wave scatter-
ing length. Here decoherence means that off-diagonal
matrix elements of the density matrix have vanished
locally. As a result, everywhere in the sample, atoms
are no longer in one pure state, but occupy two orthogonal
states, and s-wave collisions are no longer suppressed by
the Pauli principle. In a fully decohered cloud, we have a
binary mixture of two distinct species of atoms, with a
mean-field energy density Eint � V12n1n2. This interac-
tion changes the equilibrium energy level of atoms in
state j1i (j2i) according to ��1;2 � V12n2;1. The differ-
ence in equilibrium mean-field energy of the two states
is then

�Eint � ��2 � ��1 � V12�n1 � n2�: (2)

This suggests [7,8,14] that in a decohering sample, the
resonant frequency for population transfer between the
two states gradually changes from �12 � �0 to �12 �
�0 �

1
h�Eint. Here, we show both experimentally and

theoretically that this conclusion is wrong, and that the
spectroscopic resonance frequency �12 is always the un-
perturbed frequency �0.

Our experimental setup was described in [14,15].
About 107 fermionic 6Li atoms were confined in an
optical dipole trap at a temperature of 35�K. The two-
level system under consideration is formed by the two
lowest ground state hyperfine levels, j1i and j2i, corre-
sponding to jF;mFi � j1=2; 1=2i and j1=2;�1=2i in the
low field basis, respectively. A dc magnetic field of B �
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FIG. 1. Absence of mean-field shift of an rf transition in a
binary Fermi system. The resonance curves were measured for
fully decohered �80=20�% two-state mixtures of fermions. The
measured frequency difference between the two lines is �34�
146� Hz, even though Eq. (2) would predict a splitting of
20 kHz.
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320 G was applied to the sample in order to tune the
interstate scattering length a12 to a large value of
�� 300a0, where a0 is the Bohr radius [14].

We created a superposition of atoms in states j1i and j2i
using a nonadiabatic rf sweep around the energy splitting
of 74 MHz. As the sample decohered, efficient evapora-
tive cooling set in, confirming a large elastic scattering
length. After 1 sec, we were left with a fully decohered
mixture at a mean density n � 5	 1013 cm�3. The rate
of the rf sweep was adjusted so that after decoherence and
cooling, 80% of the atoms were in state j2i. The mean-
field interaction should thus have increased the energy
splitting of the two levels by h�� � ��2 � ��1 �
V12�n1 � n2� 
 h	 10 kHz. Our experiments involving
a third state [14] have confirmed the presence of such
energy shifts, and prove that full decoherence has been
reached.

Rabi spectroscopy in the interacting binary mixture
was performed by applying 200 �s rf pulses of different
frequencies, and recording the final populations in the
two states by simultaneous absorption imaging (Fig. 1).
In order to eliminate the systematic uncertainty in the
value of �0, we performed a second experiment with the
population ratios of states j1i and j2i reversed. According
to Eq. (2), one would expect an opposite shift of the
resonance.

Within our precision, no interaction shift of the reso-
nance frequency was observed. Comparing the expected
difference in mean-field shifts for the two experiments,
2�� � 20 kHz, with the measured line separation of
�34 � 146� Hz, we arrive at an apparent value for g�2� �
0:002�7�. This demonstrates the universal absence of a
resonance shift in a very cold two-level Fermi gas, inde-
pendent of the coherence in the system.

Evidently, rf spectroscopy does not measure the ex-
pected difference in thermodynamic chemical potentials
for the two states. Experiments with thermal bosons have
posed a similar puzzle [7]. Here we explain that this is a
FIG. 2. Bloch sphere representation of rf transitions. (a) An rf
pulse rotates a pure state A into B. The superposition state
decoheres into a ‘‘ring’’ distribution, represented by its aver-
age, C. (b) A second rf pulse transforms the fully decohered
state C into a partially coherent state D. The final state E is
reached only after further decoherence. (c) Transfers A! B
and C! D are coherent and reversible. B! C and D! E are
irreversible.
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direct consequence of the coherent nature of the rf
excitation.

In Fig. 2, the average properties of the many-body state
at a specific point r in the trap are described by the three
coordinates of the local spin-1=2 Bloch vector m�r� �
mz�r�êez �m?�r�. In the following, we omit the label r.
mz � ��n2 � n1�=2� represents the population difference
in the two states, whereas the transverse component m? is
a measure of the coherence in the system. The length of
the Bloch vector measures the purity of the average state
and hence the entropy of the system. Fully decohered
statistical mixtures do not have off-diagonal matrix ele-
ments of the density matrix and are represented by vec-
tors with m? � 0, with state A being the special case of a
pure state. In Fig. 2(a), state B is created by applying an rf
pulse on a pure sample A. In this case, there is no inter-
action energy in the system during the rf pulse, and no
frequency shift is expected [14]. State C is formed
through subsequent decoherence of state B. States B and
C have the same number of particles in j1i and j2i, but in
C the mean-field has fully developed.

Our experiment is performed on a C-like state
[Fig. 2(b)]. Here we explain why Eq. (2) still does not
give the correct resonance frequency for an infinitesimal
transfer of atoms between j1i and j2i. The key point is that
even though the sample is fully decohered, the applied rf
pulse reintroduces coherence into the system. According
to Eq. (6) below, this will change the value of g�2�. Let us
consider two fully decohered states,C andE. Equation (2)
correctly gives the energy of the transformation C! E.
However, these two states have different entropies, as
indicated by Bloch vectors of different lengths. An rf
pulse is a unitary transformation of the system, and
must preserve entropy. The true effect of the rf pulse is
thus to change the relative populations of j1i and j2i by
tilting the Bloch vector away from the z axis, into stateD.
It is the energy of this transformation, C! D, that needs
to be calculated in order to find the correct resonant rf
frequency.

In the case of fermions with short-range (delta func-
tion) interactions, we can prove very generally that the
resonance frequency will always be �0, by showing that
the interaction Hamiltonian is invariant under rotations
on the Bloch sphere. The interstate s-wave interaction at
point r is described by the second-quantized Hamiltonian
density

Hint�r� � V12 
y
1 �r� 

y
2 �r� 2�r� 1�r�: (3)

Under a general rotation, described by polar angles �;�,
the field operators  y

1;2 transform according to:

 y
1�;� � cos

�
2
e�i�=2 y

1 � sin
�
2
ei�=2 y

2 ;

 y
2�;� � � sin

�
2
e�i�=2 y

1 � cos
�
2
ei�=2 y

2 :

(4)

Using the standard fermionic anticommutation relations
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( 1 2 � � 2 1;  1 1 � 0, etc.), it is easy to show that

H�;�
int � V12 

y
1�;� 

y
2�;� 2�;� 1�;� � Hint: (5)

We therefore see that an rf-induced rotation on the Bloch
sphere commutes with the interaction Hamiltonian, and
hence does not change the energy of the many-body state.
It is then obvious that the resonant frequency will always
be �0, independent of the coherence of the system.

We now present a more general calculation of the
mean-field frequency shifts, which holds for both fermi-
ons and bosons. To reduce complexity and concentrate on
the only controversial case of interstate interactions, we
consider a fictitious boson with no intrastate interactions
(a11 � a22 � 0). The (local) mean-field expectation
value of the Hamiltonian density in Eq. (3) is [16]

Eint�r� � hHinti � V12�n1n2 � �n12n21�

) g�2� � 1� �
n12n21
n1n2

; (6)

where n1 � h y
1  1i and n2 � h y

2  2i are the local
densities in the two states, we have introduced ‘‘coher-
ences’’ n12 � h y

1  2i and n21 � h y
2  1i, and � � �1 for

bosons/fermions. In a fully coherent sample n12n21 �
n1n2 and g�2� � 1� �. As decoherence sets in, g�2� in-
creases (decreases) from 0 (2) to 1 for fermions (bosons).
For the most general case of a partially decohered sample,
we can rewrite Eq. (6) in terms of the (local) Bloch
vector, using n1;2 �

n
2 �mz, n12 � mx � imy � n�21, and

n12n21 � m2
x �m2

y � m2
?, where n is the total particle

density. This gives

E int � V12
n2

4
� �V12jmj2 � �1� ��V12m

2
z : (7)

Two samples with the same numbers of atoms in states
j1i and j2i, but different levels of coherence, have the
same mz, but different jm?j [e.g., states D and E in
Fig. 2(b)]. Again we see that two such samples indeed
have different interaction energies.

Now, let us evaluate the effect of coherence on the
resonant rf frequency. A coherent rf excitation preserves
entropy (jmj � const), and the total density n. In an
infinitesimal tilt of the Bloch vector, the density of atoms
transferred from j1i to j2i is dn2 � �dn1 � dmz.
Therefore, the change of interaction energy per trans-
ferred particle, and thus the shift in the resonant fre-
quency ��, comes out to be

�� �
1

h
@Eint

@mz

�
�
�
�
�
�
�n;jmj

�
1

h
�1� ��V12 �n1 � n2�: (8)

In analogy with a spinning top which precesses in
the gravitational field, the resonant frequency for an
infinitesimal tilt of the Bloch vector is also equal to
the frequency of its free precession. In the traditional
language of atomic physics, this analogy just reiterates
250404-3
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FIG. 3. Mean-field represented as effective magnetic field.
(a) Fermions: The exchange and direct interaction add up to
form a magnetic field aligned with the average spin (V12 < 0 in
the drawing). The net torque vanishes and the Bloch vector m
precesses at the unperturbed frequency �0. (b) Bosons: The
exchange interaction has opposite sign to that in fermions. It
exerts a torque on the average spin equal to the torque induced
by the direct interaction, as can be seen by comparing the two
cross products with m. The Bloch vector thus precesses at �0
plus twice the frequency shift due to direct interaction.
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that Rabi [14] and Ramsey [7] spectroscopy measure the
same characteristic frequency of the system. The striking
result is that in contrast to the interaction energy [Eqs. (6)
and (7)], the precession of the Bloch vector, or equiva-
lently the rf frequency shift [Eq. (8)], does not depend on
the level of coherence in the sample. Remarkably, the final
state may have a value of g�2� different from the initial
state, such that the energy difference per transferred
particle is independent of the initial g�2�. Equation (8)
explains both our measurements with fermions, and the
experiment with thermal bosons of Ref. [7].

In order to further elucidate the role of coherences
in the precession of the Bloch vector, we employ the
interpretation of the mean-field energy as the interac-
tion of the average spin with an effective magnetic
field [12,13]. Using Eq. (7), we obtain Eint � const �
1
2Beff � m [17] with

Beff � 2V12�mzêez � �m?�: (9)

In this picture, the precession of the spin due to interac-
tions is driven by the torque Beff 	m. The magnetic field
along the z axis is induced by the direct interaction, and
has the same sign for fermions and bosons (Fig. 3). The
transverse magnetic field comes from the exchange inter-
action, and has opposite signs for fermions and bosons.
For fermions, Beff is parallel to m [Eq. (9)] and hence
does not cause any precession. Equivalently, the direct
and exchange interaction exert torques equal and opposite
to each other. For bosons, the two contributions add up to
yield exactly twice the precession frequency given by the
direct interaction alone. During decoherence, the exerted
torque shrinks in proportion to the decaying transverse
spin. Therefore, the precession frequency remains con-
stant, no matter how small the coherences are.
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In conclusion, we have demonstrated the absence of the
mean-field shift of rf transitions in a fully decohered,
interacting binary mixture of fermions. This was ex-
plained by proving the invariance of the interaction en-
ergy under coherent Hilbert space rotations. This result is
relevant for the potential use of a fermionic atom supply-
ing the frequency standard in an atomic or optical clock,
since it implies a robust elimination of the systematic
errors due to density dependent frequency shifts.
Previously, the absence of such clock shifts was explained
by the absence of mean-field energy in a purely coherent
superposition state [14]. Now we have shown that there is
no spectroscopic shift even after decoherence has led to
measurable mean-field energies. Further, we have pre-
sented a simple theoretical framework for calculating
the precession frequency of the Bloch vector which de-
scribes an arbitrary spin state of either fermions or bo-
sons. This resolves ‘‘the mystery of the Ramsey fringe
that did not chirp’’ [8] with a simple and intuitive picture.
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