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We investigate theoretically the magnetization dynamics of a conducting magnetic nanoparticle
weakly coupled to source and drain electrodes, under the assumption that all relaxation comes from
exchange of electrons with the electrodes. In the regime of sequential tunneling, the magnetization
dynamics is characterized by a relaxation time #;, which strongly depends on temperature, bias voltage,
and gate voltage. While a direct measure of a nanoparticle magnetization might be difficult, we find that
t; can be determined through a time resolved transport measurement. For a suitable choice of gate
voltage and bias voltage, the magnetization performs a bias-driven Brownian motion regardless of the

presence of anisotropy.
DOI: 10.1103/PhysRevLett.91.247201

Electrical and magnetic dynamics of itinerant ferro-
magnets are often described using a generalization of a
“Born-Oppenheimer” approximation, in which the elec-
trons adjust instantaneously to any changes in the mag-
netization. This approximation, which is justified by the
wide disparity of electronic and magnetic time scales, is
found to hold down to the smallest size scales attainable
by present-day nanofabrication techniques. The list of
physical phenomena it explains includes the giant mag-
netoresistance effect [1], the exchange interaction be-
tween different layers in ferromagnetic multilayers [2],
and the nonequilibrium spin torque [3]. The first-order
effect of a changing magnetization on the electrons was
considered only recently [4].

Once electronic and magnetic degrees of freedom are
separated, a realistic description of magnetization dy-
namics requires the inclusion of a relaxation mechanism.
A phenomenological description of magnetic relaxation is
provided by the Gilbert damping term in the Landau-
Lifschitz-Gilbert equation. The Gilbert damping term
represents the magnetic relaxation caused by spin-orbit
scattering, phonons, magnetic impurities, interface scat-
tering, etc.; its microscopic origin is the subject of on-
going research [5]. Additional magnetic relaxation in thin
ferromagnetic films follows from the emission of spin
currents into normal metals adjacent to the ferromagnet
[4]. For ferromagnetic films, the coupling to normal-
metal electrodes has been found to increase the Gilbert
damping coefficient by an order of magnitude, making
this channel of relaxation the dominant one (see Ref. [4]
and reference therein).

It is the purpose of this Letter to study time-dependent
electric and magnetic properties of a magnetic nano-
particle, weakly coupled to source and drain reservoirs
via tunneling contacts. Such magnetic nanoparticles have
been fabricated and studied recently by Ralph and co-
workers [6,7]. In the absence of strong spin-orbit coupling
in the nanoparticle or for sufficiently large conductances
of the tunneling barriers, all electronic and magnetic
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relaxation occurs via the exchange of electrons with the
leads. This system is sufficiently simple that magnetic and
charge degrees of freedom can be treated on equal footing
and the separation of time scales for charge and magne-
tization dynamics can be derived from a microscopic
model. Moreover, because magnetic relaxation takes
place through the exchange of electrons with the leads,
the magnetic dynamics crucially depends on the electric
environment (bias voltage and the voltages on nearby
metal gates). This dependence leads to a tunable magne-
tization relaxation rate. To our knowledge, this is the
first system in which magnetic damping rate can be tuned
by a simple gate voltage. Tunability is an important asset
for potential applications of magnetic nanostructures,
since optimal functioning of a nanomagnetic device re-
quires that damping rate is matched to other relevant time
scales of the system. Further, as we show below, for
certain values of bias and gate voltages, the electric
current creates a nonequilibrium “randomization” pro-
cess that exceeds relaxation, causing a random motion of
the magnetization vector, even in the presence of mag-
netic anisotropy.

Model. —The starting point of our discussion is a
model Hamiltonian for a ferromagnetic nanoparticle, in
which the ferromagnetism arises from the long-range
exchange interaction [8],

-2 K
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Here ¢, and cfw are annihilation and creation operators
for an electron with spin o and energy ¢,
. 1 boa
S = 5 Z Cuo0o,0,Cuo, (2)
M, 01,07

is the total spin of the nanoparticle, ¢ is the vector of
Pauli matrices, J and K set the strength of the exchange
interaction and anisotropy, respectively, E is the charg-
ing energy, and N, is proportional to the gate voltage.
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Without the anisotropy term, this model is known as the
“universal Hamiltonian,” which has been shown to de-
scribe nonmagnetic metal nanoparticles on energy scales
below the Thouless energy [8,9]. [Note, however, that,
unlike the universal Hamiltonian, Eq. (1) should be con-
sidered a model description only, since ferromagnetism
implies a splitting between majority and minority elec-
trons that exceeds the Thouless energy.]

Without exchange interaction and magnetic anisot-
ropy, Eq. (1) is the basis for the ‘“‘constant interaction
model” of the Coulomb blockade [10]. For sufficiently
large exchange interaction, the ground state of the
Hamiltonian (1) is ferromagnetic; it has Ny = 2§ singly
occupied single-electron levels and different Fermi levels
Ey and E, for majority and minority electrons, respec-
tively [see Fig. 1(b)] with Ey; — E,, = 25J. The excited
many-electron states |a) are characterized by occupation
numbers of the single-electron levels n, =0, 1, 2, the
total spin S, the z component of the total spin, S,, and
an additional degeneracy parameter if S is not maximal
(The z axis is assumed to be the easy axis of the magnet.)
For low-lying excited states, the identity N, = 2§ is pre-
served, since many-electron states with N, > 2§ have an
excitation energy of order Ey; — E,,, [11,12]. The typical
energy scale for low-lying excited states is of the order of
the exchange energy J. In the nanoparticles studied in
Refs. [6,7], the anisotropy K is of order J as well [11], so
that the magnetic excitations S, — S, = 1 have energy
comparable to that of electron-hole excitations.

The time-independent low energy properties of this
model have already been extensively analyzed in
Refs. [11,12]. Here we study the time dependence of the
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FIG. 1. (a) Schematic of the system under consideration: a
ferromagnetic nanoparticle (F) is connected via tunneling
junctions to two electrodes, which can be normal (N) or
ferromagnetic (F) metals. A bias voltage Vi, is applied across
the nanoparticle, while a gate voltage V, can be applied on a
gate capacitively coupled to the particle. (b) Structure of the
electronic ground state of the nanoparticle. The ground state
has N singly occupied levels and Fermi levels Ey and E,, for
majority and minority electrons, respectively.

total spin S for the case when the nanoparticle is con-
nected to source and drain reservoirs, which can be
normal metals or ferromagnets [see Fig. 1(a)]. If the leads
are ferromagnetic, we assume that the magnetization is
collinear with the easy axis of the nanoparticle. For weak
coupling (level broadening much smaller than tempera-
ture and level spacing), the electronic state of the nano-
particle can be characterized by the probability P,, to find
the nanoparticle in many-electron state |a). The proba-
bilities are governed by a rate equation,

Pt C =33 > Tualeu )P = fi(Eq — Ex))Py + fi(Eq — Eg)Py]

+ T el lcfiol ) [=f(Ey — EQ)Po + (1 = fi(Eq — E )P 3)

Here the sum over o’ extends over all many-electron
states |a’), whereas the sum over u extends over all
single-electron states w. The distribution functions for
the left and right reservoirs are denoted f;, /[ = L, R,
whereas I',,;, set the tunneling rate through contact [
for majority (1) or minority (|) electrons to the one-
body state u. Equation (3) generalizes the rate equation
used in the theory of Coulomb blockade [13]. However,
one should note that, upon using an evolution equation for
probabilities, information on off-diagonal terms of the
density matrix is lost. This means that, while we keep
track of the magnetization along the z axis, the position of
the magnetization in the xy plane is not monitored. This
prevents the use of this approach to the case of ferromag-
netic leads with noncollinear magnetizations.
Separation of time scales.— The magnetic structure of
the rate equation is encoded in the matrix elements
(@'|cls|a). Only matrix elements for which the particle

247201-2

number N, = N, * 1 and the spin S, = S, * 1/2 are
nonzero. The spin dependence of the corresponding tran-
sition rate (matrix element squared) is proportional to the
square of a Clebsch-Gordan coefficient [14]. Close to
equilibrium (S, = §), these two relevant Clebsch-
Gordan coefficients are of order 1 and 1/ JS <« 1, for
up and down electrons, respectively, tunneling on a ma-
jority state, and vice versa for a minority state. As we
shall see below, it is this hierarchy that leads to the
separation of time scales for the charge and magnetic
degrees of freedom.

We now consider Eq. (3) in the limit where both the
temperature and bias voltage are much smaller than J, so
that only one single-electron state w is involved in trans-
port, and for the case that the system is close to equilib-
rium, n = § — S, < S. For definiteness, we assume that
M is a minority state. Denoting the many-electron state
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with N electrons, spin S and S, = S — n by “(n, —)”” and
the many-electron state with N + 1 electrons, spin § —
1/2and S, =S — 1/2 — nby “(n, +)”, Eq. (3) reads

9Py = > D}, 9P, = > D, 4)
I=L,R I=L,R
where
n+1
D;;r M”zS + l[fln n+1 (1 _f}n)PVJlr]
Ty 2S P — = AP o)
DJZ:FMITZS-FI[( f}n*l)P;—l_f}nP;]
28 — | e
Lo (L= FOPT = fi,Pi) (6)

and we defined f,,, = f/(E;f — E, ) and f,4 = f1(E; —
E. . ;). The structure of the rate equation is similar if
transport is facilitated by a majority state or if sev-
eral one-electron states contribute to transport. In all
cases, one retains the special hierarchy of transition rates
that is present in Eqgs. (5) and (6): n =S — §, stays
constant in most tunneling events (transition rate of order

I',;)), whereas only a small fraction of tunneling events
allows n to change by unity [transition rate of order
Lqn/2S + 1)1

To leading order in n/S, only the second lines in
Egs. (5) and (6), corresponding to a process where a
down spin enters or exits the quantum dot, contribute.
Such a process facilitates charge relaxation, the corre-
sponding relaxation time scale being

Ie = (F;LLI + r,uRl)71~ (7)

This is the same time scale as for charge relaxation in a
nonmagnetic Coulomb blockaded particle [13].

The magnetization dynamics appears when we con-
sider terms of order n/S in Egs. (5) and (6). We consider
the n dependence of the Clebsch-Gordan coefficients in
Egs. (5) and (6), but neglect the (very weak) n depen-
dence of the Fermi functions f}n and f}n. Assuming that
the charge degree of freedom is in equilibrium, the
probability for the nanoparticle to have spin §, =S — n
is P, =P} + P, = (1 +c)P,, where c is a weighted

- L — o)+
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average of the distribution functions in the two leads,

_Tunfi + Tunfi

(8)
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(The ratio ¢ = P;; /P, is taken n independent in view of
the comments made above.) The evolution equation for P,
then reads

aP,=vy_(n+
- ['}’J’l + ’)/+(l’l + 1)]Pn’ (9)

where we abbreviated

_ (= f1) + elum(l = fR)
v 25 + 1 :

_ (=l +0
25+ 1

In equilibrium one has y_ > 7y, corresponding to the
stable stationary solution

P, = (y+/y)"(d—yi/vo). (11)

Equation (9) has a simple interpretation in terms of a
random walker on a semi-infinite chain that has a proba-
bility y_n to step towards the origin and a probability
v.+(n + 1) to step away from the origin. The difference
v_ — v, can be identified as the magnetic relaxation rate
1/t,; the sum y, + y_ corresponds to a “‘randomization
rate” for the magnetization. The identification y_ —
v, = 1/t; becomes manifest when the time-dependent
problem is cast in terms of an evolution equation for
moments of P, (corresponding to moments of §,). For
the first moment M(r) = > nP,(¢) one finds

OM(1) =y, — M)/t tfl =vy_—vyy (12)

which is the equivalent of the Landau-Lifschitz-Gilbert
equation for our system. Note that, while the charge
relaxation rate 1/, depends on the tunneling rates
only, both y_ and y, depend strongly on temperature,
bias voltage, and gate voltage via the Fermi functions f7
and f7.

If a bias voltage is applied on the system, the effect of
the relaxation of M(¢) toward its equilibrium value can
be inferred from a small change of the measured electric
current, thus allowing for an electric measurement of the
magnetic relaxation time 7,

DP, sy + yenP,

(10)
— T pifk

(h = &) = Tt — c)}. (13)

FMLl + F#Rl

[In Eq. (13) constant terms of order 1/(2S + 1) have been dropped.] Whereas additional intrinsic relaxation mecha-
nisms (phonon-magnon coupling or spin-orbit coupling), which have not been included in the above analysis, may alter

t1, Eq. (13) remains valid in all cases.

Nonequilibrium induced Brownian motion of the magnetization.— An interesting limit occurs when the bias voltage

is bigger than E
while fln = an
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— E; , whereas the temperature is much smaller than E
= 0. For normal-metal leads and a symmetric particle-lead coupling (I';, =

— E; . In that case, one may set f|; = f;, =
I'z,), one then obtains

247201-3



VOLUME 91, NUMBER 24

PHYSICAL REVIEW LETTERS

week ending
12 DECEMBER 2003

that the stationary solution is given by the detailed bal-
ance solution, P} = P, = const, independent of the
magnetization n. [This result can be verified from direct
solution of the detailed balance equation associated with
Eq. (3)]. This total randomization of the magnetization
occurs irrespective of the presence of the anisotropy:
although the (anisotropy) energy of a state increases
with n, its probability P, does not decrease. This remark-
able result is closely linked to the magnetic structure of
the master equation: The bias voltage serves as a driving
force for magnetization randomization, whereas the mag-
netization relaxation is suppressed by Coulomb blockade.
We note that through this mechanism, the particle’s mag-
netic energy can increase to a value much above the
ground state energy. In a real sample, this effect is limited
by extra sources of relaxation that we have not included
(e.g., spin-orbit scattering).

In Fig. 2 an example of the bias-voltage dependence of
current and average magnetization is shown, obtained
from numerical solution of the rate equation (3). Except
small regions of width AVy;,. = K/e near current steps,
which appear when a transition n + 1 — n is allowed
while the corresponding n — n transition is still blocked,
one observes that the magnetization is fully randomized
as soon as the bias voltage exceeds the threshold for
current flow. The randomization effect is suppressed
when K = J. At this point, particle-hole excitations af-
fect the hierarchy in the structure of the rate equation (3),
allowing for additional relaxation mechanisms and the
breakdown of detailed balance. (For example, an excited
state with N + 1 electrons and n = 0, which can be
accessed from the N-electron ground state with n =1,
can relax to the N-electron ground state with n = 0.
However, the opposite process, a direct transition from
the N-electron ground state with n =0 to an excited
N + 1-electron state with n = 1, is not allowed.)

Conclusion.—We have studied a simple but realistic
model of a magnetic dynamics in a magnetic nanopar-
ticle, for which relaxation occurs via the exchange of
electrons with source and drain reservoirs. For this sys-
tem, electric and magnetic properties can be studied on
the same footing, and the separation of electric and
magnetic time scales can be established explicitly. The
magnetic dynamics is characterized by relaxation and
randomization rates, which can both be tuned by bias
voltage and gate voltage. A damping rate well matched
to other time scales is crucial for magnetic dynamics that
is both fast and robust. In this sense, the tunability of the
damping rate discovered here may be of use in future
studies of magnetic dynamics on the nanoscale. In addi-
tion, the possibility of measuring #; through a transport
measurement removes the need for a direct magnetization
measurement, which is difficult for nanoscale magnets.

247201-4

0.8
06 J _
04 .
0.2
0 L 1 1 1 1
1 T T T T
0.8

%)

~ 0.6
A L

¢ 04 :
0.2 { ]

0 i | | | \ ]
0 1 2 3 4 5

bias

T
-—
-—
-
—
-

1

FIG. 2. Current I (upper) and reduced magnetization {S.)/S
(lower) as a function of the bias voltage Vy;,, for a system with
J=1, K=0.1, and k3T = 0.01. The down (up) arrows cor-
respond to minority (majority) states that become involved in
the tunneling processes.
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