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Imaging Fractal Conductance Fluctuations and Scarred Wave Functions
in a Quantum Billiard
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We present scanning-probe images and magnetic-field plots which reveal fractal conductance
fluctuations in a quantum billiard. The quantum billiard is drawn and tuned using erasable electrostatic
lithography, where the scanning probe draws patterns of surface charge in the same environment used
for measurements. A periodicity in magnetic field, which is observed in both the images and plots,
suggests the presence of classical orbits. Subsequent high-pass filtered high-resolution images resemble
the predicted probability density of scarred wave functions, which describe the classical orbits.
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FIG. 1. Illustration of the device. Erasable electrostatic li-
thography charge spots are drawn on the device surface to
define a 1.4 by 2:9 �m quantum billiard from the subsurface
EEL uses the same low-temperature high-vacuum envi-
2DES. Biased surface electrodes separate the source and drain
2DES regions.
Universal conductance fluctuations, on the scale of
e2=h, are observed in disordered systems due to
multiple-path interference as electrons scatter from ran-
dom impurities [1]. A quantum billiard is a large quan-
tum dot where electron trajectories are ballistic, meaning
scattering occurs predominantly at the billiard boundary.
If the electron phase coherence length is longer than the
billiard dimensions, then conductance fluctuations can
also be observed in quantum billiards where electrons
scatter off the billiard boundary instead of impurities [2–
5]. A soft-walled quantum billiard is a classically mixed
system, with regions of regular and chaotic behavior,
characterized by the presence of fractal magnetoconduc-
tance fluctuations [4,6,7]. The system is chaotic in the
sense that a small change, in the magnetic field, for
example, strongly modifies conductance on an arbitrarily
fine scale. Quantum billiards often exhibit Aharonov-
Bohm–like [1] periodic conductance fluctuations, which
are understood to be the signature of stable closed-loop
orbits with well-defined areas whose quantum states are
preferentially excited due to collimation from the leads
[2]. The amplitude of the associated wave functions,
which are known as scarred wave functions, is concen-
trated along the underlying classical trajectories and is
found through simulation to also exist periodically in the
magnetic field [8–10]. In this Letter, we provide a further
link between experiment and simulation by presenting
high-resolution scanning-probe images of fractal conduc-
tance fluctuations which reveal structure remarkably
similar to that seen in theoretical images of scarred
wave functions [8].

Figure 1 illustrates the billiard construction. A 2D
electron system (2DES) with electron mobility 5�
106 cm2 V�1 s�1 and density 3:1� 1011 cm�2 forms at a
GaAs=AlGaAs heterojunction 97 nm beneath the surface.
The billiard is defined from the 2DES using erasable
electrostatic lithography (EEL) where a conductive scan-
ning probe draws spots of negative charge on the GaAs
surface to locally deplete 2DES electrons [11]. Uniquely,
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ronment as used for measurement, so device geometry
can be modified during the experiment. A row of EEL
spots, separated by 100 nm, creates a linear barrier in the
2DES which defines the quantum billiard walls. The
lithographic dimension of the billiard is 2 by 3:5 �m,
but EEL linewidth and lateral depletion decrease the
2DES billiard dimension to approximately 1.4 by
2:9 �m. Increased EEL charge density in the billiard
corners, and inherent material disorder, mean the con-
fining potential is not a regular rectangle, and the billiard
is chaotic. Additional EEL charge spots, separated by
10 nm, tune the billiard’s leads so that each transmit
one degenerate 1D subband (n � 2) which is known to
maximize fractal behavior [3]. Tuning was monitored
by studying the conductance plateau as a function of
probe bias with the probe positioned over either lead
[11]. Throughout all the experiments, a constant �1 V
bias was applied to the gold surface electrodes shown in
Fig. 1, which locally depletes 2DES electrons to isolate
the source and drain 2DES regions. A narrow 2DES
region forms between the electrodes whose resistance
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contributes to the 1 k� series resistance subtracted from
all the data.

Fractals are quantified by their fractal dimension DF
which is the scaling relationship between magnification
and irregularity [12,13]; curves have DF between 1 and 2,
while surfaces have DF between 2 and 3. Box counting is
an established technique to calculate DF where a curve is
plotted over a grid of squares called boxes. For magneto-
conductance plots, the box has width �B � XB=n and
height �G � XG=n, where n is an integer, XB is the range
of B, and XG the range of G. As a function of n, the
number of occupied squares N��B� are counted, and a
straight line relationship between logN��B� and log�B
indicates fractal behavior where the gradient provides DF.
Figure 2(a) plots billiard conductance against perpen-
dicular magnetic field. The conductance fluctuations,
which are reproducible, are shown to be fractal over the
range 1<�B< 30 mT by the straight line relationship
in Fig. 2(b) which has gradient DF � 1:44. This is close
to the theoretical maximum near DF � 1:5 [3,4]. The
fluctuations are not fractal for �B< 1 mT because B
approaches the correlation field, and for �B > 30 mT
due to a reduced accuracy of the box-counting algorithm
for a small number of squares. The low-field half-
maximum correlation field is Bc � 0:3 mT, and the
phase-decoherence time is �q � 100 ps calculated by an-
alyzing Bc as a function of magnetic field [14,15]. The
phase-decoherence length is vF�q � 24 �m so electrons
maintain coherence within the billiard even after multiple
boundary scattering events. After subtracting a low-order
polynomial fit from the magnetoconductance data
[2,9,14], Fig. 2(c) plots the low-field power spectrum
revealing a strong oscillation with frequency f �
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FIG. 2. (a) Magnetoconductance of the quantum billiard at
20 mK. (b) Result of box counting algorithm to determine
fractal dimension of magnetoconductance data where DF �
1:44. (c) Power spectrum of magnetoconductance data from 0
to 20 mT.
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0:33 mT�1 (period 3.0 mT) and a weaker oscillation
with f � 0:71 mT�1 (period 1.4 mT). Structure in the
spectrum is concentrated below f � 1 mT�1, which cor-
responds to an Aharonov-Bohm area �0f [16] close to the
billiard area. This suggests that the oscillations are the
signature of well-defined closed-loop orbits with associ-
ated scarred wave functions [2,8–10]. The magnetic pe-
riod is smaller than reported elsewhere because period
scales inversely with billiard dimension [17], and here the
quantum billiard is larger to facilitate imaging.

Scanned gate microscopy (SGM) generates images
by scanning a biased probe over a quantum device, such
as a quantum wire [18–21] or a quantum dot [22,23].
As the probe scans, the device conductance is recorded
to set the color of the associated image pixel. Figure 3(a)
presents a series of SGM images generated by scanning
the probe over the 2 by 2 �m region of the top half of the
quantum billiard. The same probe draws EEL patterns
and generates SGM images, but crucially, when imaging
the tip scans 100 nm off the device surface so the EEL
charge patterns are not disrupted. EEL is ideal for this
experiment because the absence of topographic surface
features mean the probe can scan over the entire billiard
area without the possibility of a collision. With the tip
biased to 0 V, the difference between the tip (silicon) and
device (GaAs) surface potentials causes a small local
fluctuation in the electron density sufficient to locally
perturb the electron wavelength, but insufficient to mod-
ify the lead transmission or change the shape of the
confining potential. This is confirmed by the presence of
oscillations in image correlation with the same periods in
magnetic field obtained earlier from the magnetoconduc-
tance data. Figure 3(b) plots image correlation against
magnetic-field period and, in addition to a high correla-
tion between adjacent images, a strong peak is seen at
3.0 mT with a weaker peak at 1.4 mT. Images in Fig. 3(a)
are offset vertically to highlight the image correlation
horizontally. Many features can be tracked between im-
ages, such as the spot in the upper left corner which
diminishes between 0 and 0.8 mT, and the spot in the
bottom right corner which moves upwards then dimin-
ishes between 1.8 and 2.8 mT.

Motivated by the prospect of imaging scarred wave
functions, Figs. 4(a) and 4(b) present high-resolution
SGM images which reveal a wealth of detail over a range
of length scales. The images cover the entire quantum
billiard and were made in magnetic fields of 42.0 and
39.1 mT, respectively. At these higher magnetic fields, a
strong periodicity in magnetoconductance is seen at
7.0 mT as shown by the peak at 0:14 mT�1 in the power
spectrum of Fig. 4(d). This periodicity is also observed in
the images as a correlation of �0:29 between images (a)
and (b) which are separated by about half this magnetic
period. The magnetic periodicity suggests the continued
presence of scarred wave functions but associated with a
different family of orbits.
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FIG. 4 (color). (a),(b) High resolution 2 by 3:5 �m SGM
conductance images of the quantum billiard in magnetic fields
of 42.0 and 39.1 mT. The approximate billiard boundary is
shown. (c) High-pass filtered version of image (b). (d) Power
spectrum of magnetoconductance data from 30 to 50 mT.
(e) Deviation map of image (c) highlighting nodes. (f) Copy
of image (c) with profile plot and annotation to identify
features characteristic of scarred wave functions. (g) Result
of cube-counting algorithm used to determine the fractal
dimension of image (b) where DF � 2:19.

FIG. 3. (a) Series of 2 by 2 �m SGM conductance images
made by scanning the probe over the top half of the quantum
billiards with 0.2 mT increments in the magnetic field. Only the
top half is scanned for efficiency. (b) Plot of average image
correlation as a function of magnetic period.
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Broad structure dominates the SGM images, so high-
pass filtering is used to identify features associated with
electron interference such as scarred wave functions. The
procedure is analogous to subtracting a low-order poly-
nomial from the magnetoconductance data before Fourier
analysis. Figure 4(c) presents the high-pass filtered ver-
sion of image (b), and the filtered image reveals general
246803-3
features resembling scarred wave functions [8]. To high-
light the resemblance, three types of structure are iden-
tified by annotation in Fig. 4(f) on a copy of image (c).
First, the boldest features appear to be enclosed within a
boundary which approximately traces the perimeter of
the EEL defined billiard which is shown on all the im-
ages. Boundary distortion is understood to be caused by
inherent device disorder or imperfect EEL patterning,
and rounding caused by increased EEL surface charge
density in the corners. Second, lines are identified in the
vertical direction, parallel to the billiard long axis.
The plot across image (f) is an average of profiles across
the width of the 1:4 �m central region of the billiard, and
peaks identify the vertical lines. Lines parallel to flat
boundaries are a common feature of scarred wave func-
tions, being associated with stable orbits scattering be-
tween or around boundaries [8]. Third, two small regions,
or nodes, where the images look blurred are identified by
image (e) which is an image of the local deviation of
image (c). Similar features are often seen in scarred wave
functions where electron trajectories spend less time.
With the additional observation that the lines and nodes
reflect the symmetry of the billiard boundary, this is
convincing evidence that general features of electron
246803-3
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orbits, described by scarred wave functions, have been
imaged.

To further the discussion of the images, note the fol-
lowing points. The measurement is only sensitive to the
probe modulation to interference of closed-loop orbits,
and therefore does not detect the direct trajectory be-
tween the leads. Energy calculations predict that the
billiard leads are coupled to many billiard wave func-
tions, some of which are scarred wave functions.
Therefore, image (c) reveals general features of several
scarred wave functions, and not specific features from a
single scarred wave function. Even the smallest imaged
features are several pixels wide and therefore several
electron wavelengths long (pixel width � 25 nm, �F �
45 nm), so only the boldest features of scarred wave
functions are resolved, and fine electron-interference de-
tail is not. High-pass filtering of images at other magnetic
fields reveals similar features, although the features are
more pronounced at certain fields, which is consistent
with the interpretation as scarred wave functions.

To investigate the fractal nature of the SGM images the
box-counting algorithm is extended to cube counting.
N��W� is the number of occupied cubes with width
�W � XW=n, height 2�W, and depth �G � XG=n,
where XW is the image width. The images are fractal
over length scales 0:1< �W < 1 �m with fractal di-
mensions DF � 2:23 and 2.19. The images are not fractal
for �W < 0:1 �m because �W approaches the electron
wavelength where the structure resembling wave func-
tions is known to exist, and for �W > 1 �m due to a
reduced accuracy in the cube-counting algorithm for
small numbers of cubes. Figure 4(g) shows the result of
the cube-counting algorithm for SGM image (b). Note
that the filtered images are not fractal. Given that the
system is chaotic, it is not surprising that the SGM images
are fractal as well as the magnetoconductance data,
although the significance of the image fractal dimension,
which varies by a few percent with B, is not fully under-
stood. The fractal nature of the images accounts for the
large range of length scales seen in the structure of Figs. 3
and 4.

Erasable electrostatic lithography has been used to
fabricate and tune a quantum billiard to exhibit fractal
conductance fluctuations with a high fractal dimension.
Subsequent high-pass-filtered scanned-gate-microscopy
images strongly resemble theoretical scarred wave func-
tions. These experiments demonstrate the power of com-
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bining erasable electrostatic lithography with scanned
probe microscopy to tune geometry and image coherent
quantum phenomena. Future experiments will likely
focus on smaller billiards where a one-to-one correspon-
dence would be expected with simulation. Scanning-
probe measurements of quantum dots are expected to
image electron-interference or electron probability den-
sity patterns with a resolution of the electron wavelength.
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