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We study a twofold orbitally degenerate Anderson impurity model which shows a nontrivial fixed
point similar to that of the two-impurity Kondo model, but remarkably more robust, as it can only be
destabilized by orbital- or gauge-symmetry breaking. The impurity model is interesting per se, but here
our interest is rather in the possibility that it might be representative of a strongly correlated lattice
model close to a Mott transition. We argue that this lattice model should unavoidably encounter the
nontrivial fixed point just before the Mott transition and react to its instability by spontaneous
generation of an orbital, spin-orbital or superconducting order parameter.
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where c are conduction-band creation operators in closely following the original work by Jones and Varma
When a metal is driven by strong correlations towards
a Mott insulator, an incoherent component of the single-
particle spectrum slowly moves away from the quasi-
particle resonance and smoothly transforms into the
Mott-Hubbard sidebands. Analogous behavior is dis-
played by an Anderson impurity model (AIM) from the
mixed valence to the Kondo regime. This is suggestive of
similar physical processes underlying the dynamics of
AIM’s and of strongly correlated electron systems across
the Mott metal-to-insulator transition (MIT), even
though a rigorous relationship holds only in infinite di-
mensions, as shown by dynamical mean field theory
(DMFT). Furthermore, DMFT shows that the Mott-
Hubbard bands split off from the quasiparticle resonance
quite before the MIToccurs [1], suggesting that it is rather
the physics of the AIM in the Kondo regime to be signifi-
cant near the MIT. In that limit, the AIM maps onto a
Kondo model with the number of conduction channels
always such as to perfectly screen the impurity. For that
reason one would exclude that the appealing non-Fermi
liquid physics of the overscreened multichannel Kondo
effect may ever appear close to the MIT.

That expectation is partly wrong. In this Letter we
study the phase diagram of an AIM which does contain
a nontrivial fixed point. We show that the physical behav-
ior around this fixed point resembles that displayed by the
two-impurity Kondo model. We also argue that the lattice
model, where the physics of the above AIM should be
relevant, necessarily encounters this fixed point just be-
fore the MIT, and discuss possible consequences.

We consider the two-orbital AIM Hamiltonian:
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symmetry which is lowered down to a spin SU(2) times
an orbital O(2) by a Hund’s rule-like coupling:
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In the Kondo regime, U much larger than the conduc-

tion bandwidth, two electrons get trapped by the impurity
in a configuration identified by total spin, S, total pseu-
dospin, T, and their z components, with energy
E�S; Sz;T; Tz� � K�T�T � 1� � �Tz�2�. By Pauli prin-
ciple, two electron configurations have either S � 1 and
T � 0, or S � 0 and T � 1. If K > 0, the lowest energy
configuration has S � 1 and T � 0, the conventional
Hund’s rules. The impurity behaves effectively as a spin
S � 1 which may be Kondo screened by the two conduc-
tion channels (� � �=2 phase shift). On the contrary, if
K < 0 the nondegenerate S � 0 T � 1 and Tz � 0 state
has lowest energy. Here we do not expect any Kondo
effect, i.e., � � 0. This situation is analogous to the two
S � 1=2 impurity Kondo model (2IKM) in the presence
of a direct exchange between the impurities. There, it is
known [2–4] that under particular circumstances an
unstable fixed point (UFP) separates the Kondo-screened
regime from the one in which the two-impurities couple
together into a singlet. In our model (1), that circum-
stance is realized thanks to the O(2) orbital symmetry, as
shown later, hence an analogous UFP should exist.

We have studied the AIM (1) in the Kondo regime by
Wilson’s numerical renormalization group (NRG),
 2003 The American Physical Society 246402-1



FIG. 1 (color online). NRG flow of the lowest energies of the
levels labeled by �Q; Tz; S�, where Q is half of the added charge.
The right and left flows correspond to a relative deviation
�K	=K	 � 
4� 10�3 from the fixed point value K	, respec-
tively. The phase diagram is sketched in the inset.
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FIG. 2 (color online). Average impurity quantum numbers as
function of K. In the left inset the behavior around the UFP is
shown in more detail, while in the right inset hS2i along the
path towards the 2IKM is displayed (see text).
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for the 2IKM [2,4]. We have also developed a comple-
mentary analysis based on Abelian bosonization, which
provides a better characterization of the UFP.

In the inset of Fig. 1 we sketch the phase diagram of (1)
in the Kondo regime, as determined by the flow of the
low-energy spectrum obtained by NRG. At fixed Kondo
exchange we find indeed an UFP upon varying K. For
K > K	, the model asymptotically flows to a Kondo-
screened fixed point, see right panel in Fig. 1, while for
K < K	 < 0 it flows towards a non-Kondo-screened fixed
point, see left panel. The intermediate crossover region,
also shown in Fig. 1, identifies the UFP [5].We notice that
(1) has a larger impurity Hilbert space than the 2IKM,
which contains, besides the S � 1 and the Tz � 0 S � 0
configurations, also the Tz � 
1 S � 0 doublet, absent in
the 2IKM. In spite of that, the low-energy spectra at the
UFP’s are the same for both models. In Fig. 2 we plot the
ground state average values of the impurity operators ~SS2,
~TT2, and �Tz�2. For large and positive K, the impurity
freezes into the S � 1 T � 0 configuration while, for
very negative values, into the Tz � 0 S � 0 one. At the
UFP hS2i � 1=2, hT2i � 3=2, and h�Tz�2i � 1=4. To prove
that our UFP is connected with the 2IKM one, we have
added to (1) a term Gz�T̂T

z�2, with Gz > 0, which pushes
upward the energy of the Tz � 
1 S � 0 doublet absent
in the 2IKM. In the inset of Fig. 2 we plot hS2i as function
of Gz at the UFP, whose position depends on Gz too.We do
find that hS2i smoothly reaches the 2IKM unit value for
large Gz.

The approach to the two stable fixed points, K < K	

and K > K	, can be described by the local perturbation
left behind by the impurity which has either disappeared,
� � 0, or been absorbed by the conduction sea, � � �=2:

ĤH	 � �
X

a�

t	�f
y
0;a�f1;a� � H:c:� �

U	

2
�n0 � 2�

2

� JS	
~SS0 
 ~SS0 � JT	�T̂T

z
0�
2; (3)

where ‘‘0’’ labels the first available site of the Wilson
chain, i.e., the actual first site for K < K	, � � 0, and
the second site for K > K	, � � �=2. Numerically we
find JT	 � 2U	 � 2JS	 � 32t	 ! 1 upon approaching the
UFP, see Fig. 3. The diverging t	 implies a singular
[/ �K � K	�

�2] impurity contribution to the specific
heat, just as in the 2IKM. Additional information is
provided by the Wilson ratios Ri � �cv �'i�=�'i �cv�,
where i � S; Tz refer to spin and orbital susceptibilities,
i.e., to those response functions which are related to
conserved quantities and, hence, are accessible by
Fermi liquid theory [6,7]. RS and RTz are shown in
Fig. 4 and appear to vanish at the UFP. By analogy
with the 2IKM, there are two other susceptibilities which
are instead expected to be singular: the susceptibility
'STz to a field which couples to the relative spin operator
ŴWiz, i � x; y; z (the staggered spin-susceptibility in the
2IKM), and the pairing susceptibility 'SC in the Cooper
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channel cy1"c
y
2# � cy2"c

y
1#. Those are not accessible by Fermi

liquid theory. Yet one can get a rough estimate of them by
the corresponding scattering amplitudes at zero external
frequencies. They are given, respectively, by �STz �
�2U	 � JS	 � JT	 and �SC � 2U	 � 3JS	 � JT	, and
hence are negative (corresponding to an enhancement of
the response) and diverge similarly approaching the UFP.
The physics underneath is the same of the 2IKM, and has
been exhaustively discussed in Ref. [4]. The UFP has a
residual entropy ln

���
2

p
. Away from the UFP, this entropy is

quenched below a temperature scale T	 � jK � K	j
2, im-

plying a specific heat coefficient ( � 1=T	. The rest of the
impurity entropy is quenched at higher temperatures of
order TK � jKj. At the UFP, ( is finite, while both 'STz

and 'SC display a j lnTj singularity.
The stability of the UFP is more easily accessed by

Abelian bosonization, following Ref. [8] on the 2IKM. In
the large U limit, (1) maps onto the Kondo model
246402-2
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FIG. 3. K dependence of the effective couplings in Eq. (3). In
the inset the region around K � 0 is shown.
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ĤH s�d �
X

k;a;�

�k cyk;a�ck;a� � ĤHK �
X3

i;j�1

Jij
W ŴWij !̂!ij

�
X3

i�1

�Ji
S ŜSi �̂�i � Ji

T T̂Ti �̂�i�; (4)

where �̂�i, �̂�i, and !̂!ij are, respectively, the conduction-
electron spin, orbital, and spin-orbital densities at the
impurity site. As usual in Abelian bosonization we allow
for anisotropy: Jx

S � Jy
S � Jz

S, and similarly for Ji
T and

Jij
W . We further assume Jij

W � J?W , for i; j � z. The aniso-
tropic Kondo model (4) has a continuous O�2�spin �
O�2�orbital � U�1�charge symmetry, which is useful to de-
compose into U�1�spin � U�1�orbital � U�1�charge plus two
discrete symmetries: (i) a  spinx rotation: ca;� $ ca;��
and da;� $ da;��; and (ii) a  orbx rotation: c1� $ c2�
and d1� $ d2�. By Abelian bosonization [9], we write
the s-wave scattering components of conduction elec-
trons as chiral one-dimensional fermions ca;��x� �
1=

����������
2��

p
Fa;� exp��i-a;��x��, where -a;� are chiral

free Bose fields, � a short distance cutoff, and the
Klein factors Fa;� are Grassman variables enforcing
proper anticommutation relations. Next, we introduce
the combinations: -c � �-1" �-1# �-2" �-2#�=2, -s �
�-1" � -1# � -2" � -2#�=2, -f � �-1" � -1# � -2" �
-2#�=2, -sf � �-1" �-1# �-2" �-2#�=2. After applying
the canonical transformation exp�iŜSz-s�0�� �
exp�iT̂Tz-f�0��, Eq. (4) can be refermionized via "b�x� �
1=

����������
2��

p
Fb exp��i-b�x��, where b � c; s; f; sf [9]. For a

particular value of Jz
S � Jz

T , the end result is an effective
model where only "sf is coupled to the impurity, just as
in the 2IKM [8].

To locate the UFP, we follow the same strategy of
Ref. [8]: we assume K large compared to the conduction
bandwidth and search for an accidental ground state
degeneracy in that part of the effective Hamiltonian
involving just the impurity and the Fb’s:

ĤHimp � ĤHK � .S�ŜS
z�2 � .T�T̂T

z�2

�
J?W
2��

�Fy
s Fy

f ŴW�� � FfF
y
s ŴW�� � H:c:�: (5)
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.S and .T are cutoff dependent functions of Jz
S, Jz

T . For a
specific K	 < 0, we find that the impurity state j0i �
jS � 0; Sz � 0;T � 1; Tz � 0i is degenerate with:

j 1i �
cos/���
2

p �Ff j 0; 0; 1;�1i � Fy
f j 0; 0; 1;�1i �

�
sin/���
2

p �Fs j 1;�1; 0; 0i � Fy
s j 1;�1; 0; 0i �; (6)

where / depends on the Hamiltonian parameters. For our
model (1), / should be equal to �=4 to reproduce the
observed UFP average values of S2, T2, and �Tz�2. If we
added the term Gz �T̂T

z�2, / should increase with Gz, reach-
ing the 2IKM value of / � �=2 for large Gz. The Klein
factors in (6) show that j 0i and j 1i differ by one fermion,
justifying the introduction of a fictitious fermion connect-
ing that doublet: fy j 0i � j 1i.

The low-energy Hamiltonian close to the UFP, ĤHUFP, is
then obtained by projection onto the above doublet-sub-
space. Including up to dimension 3=2 operators,

ĤH UFP � H0 � .0�"
y
sf�0� �"sf�0���f

y � f�

� .1@x�"
y
sf�0� �"sf�0���f

y � f� � �K	f
yf;

(7)

with H0 the free Hamiltonian for the "b�x�’s, and �K	

the deviation from the fixed-point value K	. .0 and .1 are
model dependent parameters. As expected, Eq. (7) has the
same form as in the 2IKM [8]. The UFP Hamiltonian
[first line of Eq. (7)] is a resonant level model involv-
ing one Majorana fermion "y

sf �"sf hybridizing with
fy � f. The combination fy � f is free and is responsible
for the ln

���
2

p
UFP residual entropy. The relevant term

(dimension 1=2) proportional to �K	 describes the devia-
tion from the UFP, while the .1 term is the leading
irrelevant operator (dimension 3=2). Other possibly rele-
vant operators are instead not allowed by the symmetry
properties of (4), which have to be preserved by ĤHUFP too.
For instance, among the particle-hole symmetry break-
ing terms allowed in the 2IKM [4], only the marginal
one, which does not spoil the UFP properties, may appear
in our model, since the relevant operator, bosonization
of which is given by �"y

f �0� �"f�0���f � fy� [8], is
here forbidden by U�1�orbital. In fact, while f is invariant
under a U�1�orbital rotation parametrized by a phase �, due
to the Klein factors in (6), "f transforms into e2i�"f.
Indeed all relevant perturbations which destabilize the
UFP correspond to physical instabilities of model (1),
unlike what happens in the 2IKM. For instance, the
relevant terms �"c�0� 
"

y
c �0���f � fy�, of dimension

1=2, break U�1�charge. Therefore, gauge-symmetry break-
ing destabilizes the UFP, which explains the singular be-
havior of 'SC. Analogously, 'STz is the response to a field
which breaks SU�2�spin � orbx and allows the relevant
terms [10] �"y

sf�0� �"sf�0���f � fy� [4,8] and �"y
s �0� 


"s�0���f � fy�. Besides those two susceptibilities, also
246402-3
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FIG. 4. Spin (RS) and orbital (RTz ) Wilson ratios as functions
of K. Notice that the K � 0, SU(4)-point, as well as large K,
S � 1 impurity (shown in the inset), values coincide with
known results.
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'Ta and 'STa , with a � x; y, are logarithmically diverg-
ing, being related to fields breaking U�1�orbital.

We now turn to our original motivation and discuss the
possible relevance of the above results to the physics of
the Mott transition. Take a lattice model with an on-site
interaction of the same form as in (1) and (2), with
inverted Hund’s coupling K < 0. This may occur if the
electrons are Jahn-Teller coupled to two degenerate
weakly dispersive optical phonons by g

P
R�q1RT̂Tx

R �
q2RT̂Ty

R�, where qiR are the phonon coordinates on-site R.
This coupling gives rise to a retarded electron-electron
interaction which reduces to (2) with K ’ �g2=!0 when
the typical phonon frequency !0 is much larger than the
quasiparticle bandwidth. Alternatively, two single-band
Hubbard planes/chains coupled by J

P
R

~SS1R 
 ~SS2R, where 1
and 2 refer to the two planes/chains and J > 0, would
also display a similar behavior.

When K � 0 the lattice model should undergo a MITat
some finite Uc in the absence of nesting. If jKj � Uc, the
physics of the metallic phase near the MIT should re-
semble that of the AIM, Eq. (1), in the Kondo regime.
Since the width of the quasiparticle resonance, i.e., the
effective Kondo temperature TK, vanishes at the MIT,
TK � Uc � U [1], the system is forced to enter the critical
region around the unstable fixed point, jKj � TK, before
the MIT occurs. However, the instability of the AIM
around the UFP towards the orbital O(2) or charge U(1)
symmetry breakings should transform in the lattice
model into a true bulk instability. Namely, at least within
DMFT, we expect that the self-consistency condition
which relates the impurity Green’s function with the local
Green’s function of the bath enlarges the UFP into a
whole region where the model undergoes a spontaneous
symmetry breaking. This would open up new screening
channels for those degrees of freedom which survive
below TK down to T	 � jTK � Kj2=TK (K < 0) and are
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responsible of the finite entropy at the UFP. If the band
structure lacks nesting or Van Hove singularities, orbital
or spin-orbital instabilities are not competitive with the
Cooper instability [11]. This suggests a superconducting
region just before the MIT, which would be remarkable
since the bare scattering amplitude in the Cooper channel
is U � K, hence repulsive for U � Uc � jKj. We believe
that this phase is analogous to the strongly correlated
superconductivity recently identified by DMFT in a
model for tetravalent alkali doped fullerenes [12]. The
latter model maps by DMFT onto a threefold degenerate
AIM with inverted Hund’s rules, mimicking a t � H
dynamical Jahn-Teller effect. Although different from
our model (1) and (2), it contains the essential physics
we have described in this work; namely, the competition
between the Kondo- and an intra-impurity-screening
mechanism.
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