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We study acoustical vortices (AVs) and their connection with optical vortices (OVs). We show that AVs
and OVs have the same properties if the concept of pseudomomentum is used. Radiation stress and
conservation of topological charge are obtained with the pseudomomentum rule. In a weak nonlinear
regime, the conservation of pseudo angular momentum imposes a linear increase of the topological
charge with the harmonic order. This last result is experimentally verified.
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Wave front dislocation is one of the three kinds of wave
singularities [1]. These dislocations were first studied in
acoustics and classified into two categories: edge and
screw dislocations [2]. Afterward, this second type of
dislocation was intensely studied in optics and named
optical vortices (OVs). A significant stage was the dis-
covery that these waves possess a quantified angular
momentum proportional to the topological charge [3]
and its experimental confirmation [4]. These singular
waves have many analogies with vortices in superfluid.
This interest was reinforced by the experimental realiza-
tion of these waves and their many potential applications,
such as precision alignment or optical spanners [4,5].
However, although dislocations were first studied in
acoustics, there is only one relatively recent study done
on acoustical vortices (AVs) [6].

In the present Letter, an analysis taking into account
the specific nonlinearities induced by the existence of a
reference frame, namely the material medium supporting
the acoustic wave, is presented. This peculiarity requires
one to distinguish the concepts of total momentum and
pseudomomentum [7] and, as we will show, is also rele-
vant for OVs propagating in a dielectric medium. We will
derive a complete analogy between the pseudo angular
momentum of a longitudinal acoustic wave and the one of
a linearly polarized optical wave. This analysis will then
be used to demonstrate that charge conservation of OV
and AV propagating in heterogeneous media is related
to pseudo angular momentum conservation. Although
pseudomomentum involves only linear fields, the propa-
gation of an acoustic wave is always a nonlinear phe-
nomenon. These nonlinearities induce the generation of
higher harmonics. It will be shown that the sum over all
the harmonics of pseudo angular momentum and pseudo-
energy will be conserved if the charge increases linearly
with the order of the harmonic. Again this demonstra-
tion is also valid for OVs propagating in a nonlinear
medium. Thereafter an original experimental setup is
described. AVs of charges 1 and 2 are achieved at weak
and finite amplitudes. The increase of the topological
charge during the transfer of energy towards the harmon-
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ics is observed as well as the dislocation of higher order
vortices in elementary vortices of charge 1. Finally, a
short discussion demonstrates for radiation stress appli-
cations that the concept of angular pseudomomentum is
also the relevant one.

The computation of the momentum of an acoustic wave
is a tricky exercise because it requires the development of
the mean field at second order. Indeed, the existence of a
reference frame introduces nonlinear terms into the Euler
equation and the equation of mass conservation. As an
example, the mean velocity in Lagrange coordinates, the
material reference frame at rest, is equal to the mean
velocity in Euler coordinates, the instantaneous posi-
tions, at first order only [8]:

(W) = (W) = pg g XD, (D

where (v)-, (v), {I), py, and ¢ are, respectively, the mean
velocity in Lagrange and Euler coordinates, the wave
energy density flux, the density, and the speed of sound
of the medium at rest. Pressure and velocity at second
order for a medium at rest may be written

v=uv, + v, with (v;) = 0, 2)

p=po+pi+ P with (p;) = 0. 3)

With these notations, Eq. (1) can be rewritten I = p v
(vt = (va) = pyleg X pivy). “4)

Thus, the difference between the average values, the
Stokes drift, is proportional to the Poynting vector of the
acoustic wave and involves linear fields only, whereas
the total momentum in Euler coordinates is equal to

(pv) = {p1v1) + po(v2). )

However, for a lossless medium the mean Lagrangian
velocity is null so that

polv)t = 0. 6)

This condition neglects the acoustic streaming resulting
from transfer of momentum in an absorbing medium [8].
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Equations (4) and (6) give
polva) = —cgXpivy), @)

and, combined with the equation of state at first order
p1 = cip), one obtains

polva) = —(p1vy). ®)

This last equation shows that the 2 s order contributions
cancel each other in a lossless medium. One can never-
theless define a pseudomomentum g = (p,v;) = ¢y X(I).
This pseudomomentum is defined with linear fields only.
This last equation is also valid in optics. Indeed, the
pseudomomentum, in Minkowski form, is equal to [9]
n n? n*I)

—-U=—=(EANH)=
c c2< ) c?

(€))

where U is the density of energy of the electromagnetic

wave, n is the index of the medium, and c is the speed of

light in vacuum. This pseudomomentum should not be

confused with the Abraham form which in certain cases

is equal to the momentum of the wave [9]:
1 _ (D

U="(Erm)
ne 2 2’

(10)

The acoustic waves being always propagated in a me-
dium, there is no equivalent of this last quantity in
acoustics. Thereafter, this analogy between acoustical
and optical pseudomomentum will be used to derive in
acoustics the results previously obtained in optics. The
pressure and velocity at first order of a longitudinal wave
may be computed from a scalar potential:

pi=pod  andv, = -Vg, (11)

where the dot signifies the time derivative, so that the
pseudomomentum reads

=~ 25"V + $V") (12)
€o

where the star stands for phase conjugation. If one takes
for ¢ the expression used by Allen er al [3] for the
potential vector of a linearly polarized optical wave,

¢ = ulx, y, z)e ke, (13)

one obtains in acoustics

g =io 2% (wVu — uVu) + k222 (14)
2¢c; 5
Hence, the acoustical pseudomomentum of a Gauss-
Laguerre beam is identical to the optical momentum
found by Allen et al [3] with the vacuum permittivity,
gy, replaced by ¢ 2p,. However, Allen et al. used the
Abraham expression, Eq. (10). A better analogy is ob-
tained if one uses the Minkowski expression, Eq. (9), i.e.,
the optical pseudomomentum. In this case, instead of the
permittivity of the vacuum, we have the permittivity of
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the dielectric material so that both acoustical and optical
pseudomomentum will have the same conservation law.
This last point is discussed in the next paragraph. Thus,
the derivation detailed in Allen may be applied to the
acoustics case and shows that an AV has the same pseudo
angular momentum as an OV [10]:

M, = lwpocy>lul?, (15)

where [ is the topological charge. Moreover, the relation
between the Poynting vector and the pseudomomentum is
the same one in optics and in acoustics so that the ratio
between the angular and the linear pseudomomentum is

MZ lC()

g, o

(16)

In optics, an additional term appears if the wave is circu-
larly polarized [3]. This term does not exist for acoustic
waves in a fluid which are longitudinal waves. But this
term should be taken into account for acoustical trans-
verse waves in a solid which may be circularly polarized.

The conservation of angular momentum is usually
invoked to explain the conservation of the topological
charge. Nevertheless, the conserved quantity is the total
angular momentum, which includes not only the momen-
tum of the electromagnetic wave but also the angular
momentum of the atoms of the dielectric medium [9].
Indeed, the electromagnetic wave exerts forces on the
atoms of the medium which acquires an angular momen-
tum as long as the wave is present. This momentum part
carried by the matter is excluded from the Abraham
form. Furthermore, conservation of total momentum is
related to the space isotropy and does not depend on the
isotropy of the dielectric medium. However, cylindrical
lens are used to transform the Hermitte-Gauss beam,
which does not possess any topological charge, in OV
[3]. More recently, cylindrical lenses were also used to
reverse the topological charge of an optical vortex [11].
On the contrary, spherical lenses preserve the charge.
These experiments show that the conservation of the
topological charge is affected by the symmetry of rota-
tion of the medium and, hence, follows the conservation
law of pseudomomentum, i.e., Minkowski form. Indeed
the conservation of the pseudomomentum is related to
invariance by translation of the wave keeping the medium
fixed, i.e., the medium’s homogeneity, and the conser-
vation of the pseudo angular momentum is related to
invariance by rotation of the medium, i.e., its isotropy
[7,9]. Thus, the relevant quantity in optics to study the
topological charge is as in acoustics the pseudo angular
momentum.

For the weak nonlinear regime, energy is transferred to
harmonics of higher order of index i. The discussion
presented above shows that the pseudo angular momen-
tum should be conserved in an isotropic, lossless medium.
Equation (15) may be written
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l;
M, => —(E), (17)
i i w;
where (E;) is the pseudoenergy. Here we neglect the
smaller term introduced by the helical structure of the
wave front and assume a quasiplane wave front so that

2 2 2 2
<El> _ |pl| 5 + Po |U1| ~ |pz|2 _ Cl)lz p()l’:ll .
2pocy 2 Pocy €o

Equation (17) demonstrates that the pseudo angular
momentum and the pseudoenergy are both conserved if
and only if the ratio between the topological charge and
the frequency does not depend on the harmonic order.

The conservation of the pseudo angular momentum in
a nonlinear regime was experimentally checked. We syn-
thesized acoustic vortices by using a network of 55 piezo-
electric transducers (Imasonic, France) immersed in
water. The transducers are set up on a flat surface with a
hexagonal pattern. The array pitch is 11 mm and each
element is a disk of 9 mm diameter. The central frequency
of the elements is 1 MHz corresponding to a wavelength
of 1.5 mm. The signals emitted by each piezoelectric
element are computed with the inverse filtering technique
[12]. The vortex distribution of phase and amplitude is set
on an aperture of 80 mm by 80 mm located 400 mm away
from the array. This plane is sampled with a step of
1.5 mm by a polyvinylidene fluoride hydrophone of
I mm in diameter. The multichannel electronics that
control the transducer array has a dynamics of 10 bit for
a sampling rate of 80 MHz (Lecoeur Electronique,
France). Each of the 128 channels is a generator of arbi-
trary signals that can deliver an average power of 25 W.
The cross channel jitter is less than 12 ns. The amplitude
and phase distribution is given by a Gauss-Laguerre beam
with a waist of 22.5 mm. Two vortices are successively
synthesized with charges 1 and 2, respectively. The time
dependence is a burst of 25 us at 1 MHz. After emission
of the signals computed by inverse filtering, the phase and
the average intensity of the pressure field are measured in
the preset plane and displayed at 1 MHz (Fig. 1) for the
vortex of charge 1 and 2. Linear variation of the phase
around the axis of the vortex as well as the phase dis-
location are nicely reproduced. The distribution of am-
plitude is also close to the objective, and the size of the
vortex core is here of only two wavelengths for the vortex
of charge 1. This sharpness is due to the very good spatial
sampling of the array and as a corollary the very broad
spatial bandwidth compared to computed holograms [13]
or spatial light modulator [14].

These measurements are made again but for transmit-
ted signals 10 times stronger than in the preceding ex-
periment, so that now the nonlinear effects are significant
and result in a transfer of energy toward the harmonics. To
see how this phenomenon affects the AVs, the phase
measurements are separately displayed for the second,
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FIG. 1. Average intensity (top figures) and instantane-
ous phase (bottom figures) measurements of AVs of charges
1 (left) and 2 (right) at weak amplitude.

20 0 2

fourth, and sixth harmonics of the vortex of charge 1 and
the first, second, and third harmonics of the vortex of
charge 2 (Fig. 2). The nonlinearity for a longitudinal
acoustic wave is quadratic and one thus obtains all the
multiples of the fundamental frequency. It is clearly ob-
served that the topological charge is not preserved and
increases linearly with the order of the harmonic. Hence,
a vortex of charge 1 generates by parametric inter-
action all the vortices of higher order while a vortex of
charge 2 will only give rise to vortices of even charge.
Indeed the condition of synchronism for the transfer of
energy towards the harmonics imposes that the wave
vectors are collinear. Consequently, the wave front is
also helical with the same step height for all the harmon-
ics [10]. This experiment also confirms that higher order
AVs are unstable and break up into elementary vortices of

FIG. 2.

Instantaneous phase measurements of harmonics 2,
4, and 6 of the vortex of charge 1 (top figures) and of harmonics
1, 2, and 3 of the vortex of charge 2 (bottom figures) at finite
amplitude.
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charge 1 [13]. This instability takes place, on the one
hand, on the vortex of charge 2 synthesized linearly by
inverse filtering, and, on the other hand, on the vortices
of higher order generated by parametric interaction.
Nevertheless the vortex of charge 6 generated by para-
metric interaction from the vortex of charge 1 is definitely
less spread out than the vortex with the same charge but
resulting from the vortex of charge 2. Indeed, harmonics
are gradually amplified by energy conversion from lower
frequency that tends to counterbalance the spreading.

Another important feature of OV is the associated
radiation stress for applications such as optical spanners.
Here again for either AV or OV the relevant quantity is
the pseudomomentum [7,15]. More precisely in acoustics,
this connection comes from the close relationship be-
tween the flux of pseudomomentum and the flux of
momentum. In fluids, the difference between these two
tensors, if any, comes from the isotropic pressurelike
contribution proportional to the coefficient of nonlinear-
ity of the medium. For instance, this contribution ex-
plains the difference between the Rayleigh and the
Langevin radiation stress [7]. However, the torque is
computed from the nondiagonal part of the flux of mo-
mentum tensor so that the pseudomomentum rule always
holds: One may consider that the medium is absent and
the wave carries an angular momentum equal to its
pseudo angular momentum or, in other words, that the
angular momentum is // per phonon. Thus, a wave vortex
will exert a mechanical torque proportional to its pseudo
angular momentum variation. A mechanical torque will
be exerted either on an absorbing medium or on a medium
whose property varies with the azimuthal angle.

In conclusion, we introduced the concept of pseudo
angular momentum for both OVs and AVs. This analysis
emphasizes the distinction between total and pseudo-
momentum when the wave propagates in a material me-
dium. Thus, in the linear regime the topological charge of
a wave vortex is associated with the pseudo angular
momentum conservation resulting from the medium isot-
ropy. For the weak nonlinear regime, conservation of
pseudoenergy and pseudo angular momentum is satisfied
if the ratio between the charge and the frequency remains
constant. Moreover, the torque exerted on an absorbing or
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anisotropic medium may ever be computed assuming that
the wave carries an angular momentum equal to its
pseudo angular momentum. The experimental setup pre-
sented here is very versatile and the AV spatial and
temporal patterns are configurable in real time. This
characteristic is of potential interest for trapping and
manipulation applications. Another potential application
is the synthesis of dark acoustical solitons; see [16] for a
review about dark optical solitons. Indeed, at second order
the speed of sound increases linearly with the wave
amplitude so that the nonlinearity is defocusing.
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