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Green Function Retrieval and Time Reversal in a Disordered World
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We apply the theory of multiple wave scattering to two contemporary, related topics: imaging with
diffuse correlations and stability of the time reversal of diffuse waves, using equipartition, coherent
backscattering, and frequency speckles as fundamental concepts.
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transform (FT) with respect to space x and time � is

many receivers at different positions to cover whole
space. As shown in Ref. [5], the correlation method can
In its early days, multiple scattering of waves was
considered to be an unavoidable nuisance. It randomizes
the phase, polarization, and wave vector of waves, and
thus complicates important applications in imaging, tele-
communication, laser action, and remote sensing. Recent
developments showed that multiple scattering can ac-
tually enhance the performance of several applications.
We mention in this context the low threshold of random
lasers [1], the robust time reversal (TR) of multiply scat-
tered waves [2], with potential applications in communi-
cation [3], the sensitivity of diffuse waves to particle
motions [4], and the reported retrievals of the Green
function from thermal phonons [5] and from diffuse
seismic waves [6].

Chaos theory successfully describes time reversal [7]
and correlations [5] of elastic waves in chaotic media.
Most applications above concern diffuse waves, with their
specific questions about statistics, leakage, and dynamics.
It is the intention of this Letter to apply multiple scatter-
ing theory to these new exciting topics. To our knowledge
the first attempts to cross correlate ‘‘noisy’’ signals to
retrieve ballistic wave motion come from seismology
(’’acoustic daylight imaging’’) [8] and helioseismology
[9]. As for time reversal, after many pioneering experi-
ments in Paris [10], Papanicolaou et al. [11] explained the
self-averaging property of time reversal for broadband
signals for (locally) layered random media in a scaling
limit of small fluctuations and propagation distances
long compared to the wavelength. Our theory makes no
assumptions on the scatterers, but applies only in the
diffuse regime, i.e., when the medium size L is much
bigger than the mean free path ‘. This excludes 1D and
localized media. This criterion is largely fulfilled in 2D
time-reversal experiments with high order multiple scat-
tering [2], as well as for some recent seismic coda obser-
vations [12].

We consider the simplest case of fluctuations of a scalar
wave field ��r; t� propagating in an infinite random me-
dium after being released by some source S�t� near t � 0
far away from the place of measurement. It is customary
to describe field correlations by the ‘‘Wigner’’ function
[13], ��r� 1x; t� 1 ����r� 1x; t� 1 ��, whose Fourier
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better known as the specific intensity I!k�r; t� of waves
with wave vector k and frequency !. A rigorous state-
ment in multiple scattering theory is that
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The structure function of the source S�!;k� is the FT
of S��;x� �
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and hG�!;k�i is the average Green’s function of the
random medium. Equation (1) is a known field-theoretical
consequence of flux conservation [14–16]. It relates
the specific intensity (a property of the diffuse energy)
at large lapse times to the spectral function
� 1

! Im hG�!;k�i of the effective medium [17](a property
of the coherent field). Physically, this implies global
equipartition of average energy in phase space.

Equation (1) looks like a manifestation of the fluctua-
tion-dissipation (FD) theorem, applied to � � G � s
for which thermal equilibrium (TE) implies that
h��!���!�i / Im hG�!�iB�!�, with B the Planck func-
tion. In TE, formula (1) would even hold without multiple
scattering, and at any time. This situation applies to the
measurement of the elastic Green’s function of an alumi-
nium block by cross-correlating thermal phonons [5].
When translated to space-time, the FD theorem shows
that coherent wave paths should in principle be observable
with travel times up to the inelastic phonon mean
free time.

The diffuse field is not in TE, not even in equilibrium.
The physics that multiple scattering and TE share is the
equipartition principle [13,18]. Unfortunately, two rea-
sons exist why Eq. (1) is not very useful to retrieve the
Green function. First, it applies to the ensemble average
of the specific intensity only, which is subject to large
mesoscopic fluctuations. This would clearly restrict its use
in several imaging problems. Second, Eq. (1) assumes
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be adapted for infinitely many equal sources, which also
eliminates the problem of ensemble averaging. The
present Letter deals with the other, equally important
case of a random field generated by one distant source
and investigate the applicability to retrieve the Green’s
function using the local time correlation function

r�x; �� �

R
dt��r� 1

2x; t�
1
2 ����r� 1

2x; t�
1
2 ��. We

shall develop a theory for its statistical average, and show
that 
r�x; �� tends to be self-averaging.

It is widely accepted that in dimensions d � 3, as well
as in d � 2 over not too large distances, the average
energy density �!�r; t� of the random field near circular
frequency !, released by a source localized in space-
time, obeys a diffusion equation [14,16] with source
S�!���r���t�. Equation (1) imposes that S�!� be the
source factor on the righthand side of Eq. (1). Since the
density is proportional to the angular integral of
the specific intensity hI!k�r; t�i, the following local ex-
pansion of the ensemble-averaged specific intensity is
often employed [16],

hI!k�r;t�i� �
1

!
ImhG�!;k�i

�
1�dD

1

!
k �@r����

�


S�!��!�r;t�: (2)

The second term in Eq. (2) gives a diffuse flow of energy
with diffusion constant D. Let us consider an explosive-
type source s�!;k� � Sjkj, with power spectrum S�!� �
S!2 that we band-filter in a frequency band B, inside
which transport quantities such as D [and thus �!�r; t�]
can be assumed constant. Recalling that the correlation
function 
�x; �� is the double FTof I!k, we get the simple
result,

h
r�x; ��i � ��B�r�@� � dD@r�B�r� � @x � � � ��


 �hGB�x; ��i � hGB�x;���i�S: (3)

The ensemble-averaged field correlation function is pro-
portional to the time derivative of the band-filtered,
ensemble-averaged Green’s function hGBi of the random
medium, symmetrized in the time � [5], and the time-
integrated density �B�r� in the bandwidth B. An anti-
symmetric part is allowed if a diffuse flux is present. It is
likely that this term is the origin of the asymmetry of the
correlation function recently observed with seismic
Rayleigh waves [6]. The verification of this hypothesis
requires a more realistic diffusion model for the
Earth’s crust [19], that is beyond the scope of this
Letter, and for which laboratory experiments will be
indispensable [20]. In an open medium of size L and
mean free path ‘, the relative importance of the asym-
243904-2
metric term is of order ‘=L far away from its boundaries,
and thus small if L� ‘.

If the waves propagate in 3D and without much dis-
persion, hImG�!;k�i � ��!2 � k2� and Eq. (3) can
easily be generalized for an arbitrary source spectrum.
We multiply left- and right-handed sides of Eq. (2) by !
and neglect the flow term. A FT with respect to!;k gives
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��
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with SB��� the time correlation function of the bandlim-
ited source. In particular, the special result h
r�0; ��i �
�B�r�SB��� will be needed later to describe time reversal.
Relation (4) facilitates the monitoring of source dynamics
with distant, diffuse correlations.

Equations (3) and (4) constitute the central result of
this Letter, despite their simplicity. Their importance
follows from the rest of this Letter. First, we establish that
fluctuations around the ensemble average are small if the
bandwidth B is large enough, as also found for layered
random media [11,21], and first suggested by time-
reversal experiments [22]. We will generalize the central
result (3) to a random medium containing an arbitrary
close object. This shows the usefulness of diffuse waves to
the inverse problem in disordered media, in a way as first
put forward by Claerbout et al. [8] for seismic noise. At
the end of this Letter we make the link with time reversal
and coherent backscattering in disordered media [10].

We start out by calculating the statistical fluctuations of

r�x; �� around its average. To this end let us adopt a
source at a large distance r with power spectrum S�!� �
S!2 that we filter over a bandwidth B. Our most impor-
tant assumption will be that the bandwidth B is much
larger than the Thouless frequency th �D=jrj2 of the
random medium. It can readily be seen that (r� � r�
1
2x),
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Z 1
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(5)

in terms of the monochromatic, retarded Green’s function
G�r; r0; !� of the wave equation. From Eq. (3) we find for
the average correlation

h
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with N the density of states in the bandwidth [14]. In the
diffuse regime spatial/frequency fluctuations obey
Gaussian (C1) statistics [23], so that the variance be-
comes,
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We use that the normalized intensity correlation function C1�� � exp��
���������������
=th

p
� decays rapidly with  and that
243904-2



P H Y S I C A L R E V I E W L E T T E R S week ending
12 DECEMBER 2003VOLUME 91, NUMBER 24
th � B; 1=�. In that case is �
r=h
ri ’
��������������
th=B

p
� 1,

so that the measurement of 
r�x; �� is close to its en-
semble average with high probability. The ratio B=th is
interpreted as the number of independent ‘‘frequency
bits’’ available in the bandwidth of the waves arriving at
the receiver [22].

In the following we will show the possibility to image a
fixed, close object by means of diffuse correlations of a
scalar field �. The formal relation between the Green
functionGT of the effective medium including the object,
the Green function hGi of the effective medium alone,
and the T matrix T of the object is GT � G�GTG (we
drop the averaging brackets if no confusion can arise). We
assert that Eq. (3) is universal so that at a large distance r
from an explosive-type source,
243904-3

r�x; �� / �B�r�@��hGT
B�r

�; r�; ��i � hGT
B�r

�; r�;���i�:
(6)

The identity (6) implies that the field correlation of the
diffuse waves between two points near the object is
equivalent to a time-resolved scattering experiment on
the object.

This assertion can be established from the following
assumptions: (i) We are in the diffuse field of a distant
(explosive) source S; (ii) The object scatters the waves
elastically. Equation (2) holds without the object. The
solution with object can formally be found by ‘‘gluing’’
a single scattering vertex K into the diffuse vertex �
giving the terms ��� K�� �K � �K��S, with S the
source [24]. In momentum space the vertex K at fre-
quency ! is given by,
Kkk0�q1;q2� � Tk��1=2�q1;k0��1=2�q2
T
k��1=2�q1;k0��1=2�q2

� Tk��1=2�q1;k0�1
2q2
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2q2

� T
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G�1
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�k��1=2�q1;k0��1=2�q2
;

with Gk � G�!;k�. Coherent propagation �KS from source to object is negligible and �K�S just slightly modifies the
diffuse background �. The terms �S� K�S dominate if the object is less than a mean free path separated from the
distant receiver, and give us,
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The Ward identity [25],
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p0��1=2�q;k��1=2�q
expressing flux conservation (ii) simplifies this expres-
sion. The singular diffusion pole (i) imposes q2 � 0 in
all T matrices and Green functions. The assertion (6)
follows after Fourier transformations with respect to
!,k, q1, and q2.

We will finally make the link of Eq. (3) with time-
reversal experiments [10] and coherent backscattering
(CBS). Consider a source s�t� at point rS in an infinite
random medium. At point rT a TR process is carried out
between times T1 and T2. The TR signal ��r; �� collected
at rD was given by De Rosny et al. [7] and Papanicolaou et
al. [11];

��rD; �� 2T2� �
Z T2

T1

dtG�rS; rT; �� t�G�rT; rD; t�

� s�t; rS�:

If we agree to time reverse the whole signal (T1 smaller
than the first arrival time and T2 deep inside the coda), a
Fourier transformation gives us

��rD;��2T2��
Z 1

�1

d!
2�

e�i!�G�rS;rT;!�G�rT;rD;!�


s�!�:

(8)

The formal equivalence of ��rD; �� 2T2� to 
r�x; ��
(with r � rS � rT and x � rS � rD) given by Eq. (5),
expressing diffuse correlations, is striking. To describe
TR only the power spectrum S�!� � js�!�j2 of the source
has to be replaced by its complex Fourier component s�!�.
Thus Eq. (4) holds for the ensemble average of the TR
signal � in 3D near the source, provided that SB�t� be
replaced by the genuine, bandlimited source pulse sB�t�.
Equation (4) then describes the autofocalization in space-
time: at the source rS the TR signal sB��� is observed in
time, whereas at � � 0 the TR signal focalizes as
x�1

Rx=c
0 dtsB�t� at a distance x around the source. Just

as we have established for diffuse correlations, the TR
signal ��r; �� is very stable against mesoscopic fluctua-
tions when the bandwidth is much larger than the
Thouless frequency (B=th � 600 in Ref. [2]).

The link between TR and CBS can be established by
applying formula (8) to a disordered half space with a TR
machine hidden inside at a depth zT and a source at a large
distance a outside (Fig. 1). We assume zT � a. Equation
(8) predicts that the TR signal at a distance x from the
source is

��x; �� 2T2� � sB���
Z
d2rk eikx�rk=a�B�‘; zT; rk�

� sB���
‘
zT

exp

�
�
zTkjxj
a

�
; (9)

where we have inserted the diffuse energy propagator
�B�z; z0; rk � r0

k
� for the 3D half space [26]. This makes
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FIG. 1. A setup that establishes the link between coherent
backscattering and time reversal. A source S emits a signal that
is received by a time-reversal machine T inside a disordered
half-space. The signal that is sent back autofocalizes in
space and time near S with the spatial line shape of coherent
backscattering.
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the line shape of the spatial autofocalization in TR equal
to the one of CBS from a half space, exhibiting the well-
known angular triangular cusp caused by long time-
reversed wave paths [26]. The angular resolution �x=a �
 =zT nicely illustrates that the diffusion process creates
an effective aperture of size zT that increases the quality
of spatial focalization, independent of ‘ [2]. The
peak signal is stable against mesoscopic fluctuations if
B � 2D=z2T .

In conclusion, we have shown that correlations of dif-
fuse waves can be used to retrieve ballistic waves between
two points in space-time. This method is stable against
mesoscopic fluctuations, if the operating bandwidth is
much larger than the Thouless frequency. We have dis-
cussed the possible temporal asymmetry of the field
correlations, the role of the power spectrum of the source,
as well as the fundamental relation to time reversal
and coherent backscattering. The method facilitates a
novel passive way of imaging that might find an applica-
tion in seismology, where active sources are expensive or
unpredictable.
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