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When ground-state atoms are accelerated through a high Q microwave cavity, radiation is produced
with an intensity which can exceed the intensity of Unruh acceleration radiation in free space by many
orders of magnitude. The reason is a strong nonadiabatic effect at cavity boundaries and its interplay
with the standard Unruh effect. The cavity field at steady state is still described by a thermal density
matrix under most conditions. However, under some conditions gain is possible, and when the atoms are
injected in a regular fashion, squeezed radiation can be produced.
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FIG. 1 (color). (a) Atoms in the ground state jbi are accel-
erated through small holes in the corner reflectors of a micro-
wave (or optical) cavity by, e.g., a strong gravitational field.
This is depicted as a unidirectional, single mode, ring cavity to
convey the idea. (b) ‘‘Vibrating reed’’ piezoelectrically driven
oscillator containing a two-level atom is placed in the cavity
yielding strong mazer action. (c) Parametric conversion of
vibronic energy p �h!o into photon and atom energies �h� and
�h!, respectively. (d) An atom is excited (deexcited) as it
simultaneously absorbs (emits) a photon in a resonant process.
(e) The counter-resonant processes that are usually neglected
as compared to the resonant processes in the ‘‘rotating wave’’
approximation; i.e., an atom is excited (deexcited) as it simul-
Atoms can be accelerated in a strong gravitational field taneously emits (absorbs) a photon.
One of the most intriguing results of modern quantum
field theory is the proof by Davies et al. [1], and others [2],
that ground-state atoms, accelerated through vacuum, are
promoted to an excited state just as if they were in con-
tact with a blackbody thermal field. These studies [1,2]
predict that a (two-level) ground-state atom, having tran-
sition frequency !, and experiencing a constant accelera-
tion a, will be excited to its upper level with a probability
governed by the Boltzmann factor exp��2�!=��, where
� � a=c, c is the speed of light in vacuum. Unfortunately,
even for large acceleration frequency� � 108 Hz [3], and
microwave frequency ! � 1010 Hz [4], this factor is ex-
ponentially small, �10�200, and is not of experimental
interest.

Thus we were motivated to study a simple gedanken
experiment based on a model consisting of a high Q
‘‘single mode’’ cavity through which we pass accelerated
two-level atoms, as in Fig. 1. We find that the radiation is
thermal (in the typical case) and the effective Boltzmann
factor is now given by �=2�!. For the above example,
�=2�!� 10�3; hence, it is many orders of magnitude
larger than that for the usual Unruh effect and is poten-
tially observable. The reason for such a strong enhance-
ment is a fast nonadiabatic switch of the interaction of
atoms with the field at the boundaries of the cavity.
Moreover, this nonadiabatic boundary contribution, in
most cases, prevails over the standard Unruh effect.

The envisioned experiment can be described as a kind
of ‘‘acceleration radiation’’ mazer [5,6]. In the ordinary
maser, stimulated emission is the mechanism for the
production of radiation. In the present case, the physics
of the emission process is intimately association with the
center-of-mass motion (taken in the z direction).

One scheme for accelerating [7] the atoms uses a par-
ticle accelerator with, e.g., hydrogenlike ions. In such a
case, ordinary (i.e., not Unruh) radiation emitted by
accelerated charged particles must be taken into account.
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through a cavity. Other means of operation via periodi-
cally driven atoms are also possible, as in Figs. 1(b) and
1(c), and are discussed later. For the moment, we simply
assume the trajectories given by, e.g., Eq. (2) and neglect
the quantization of translational motion and recoil effect.

Our main results are contained in Eqs. (4), (5), (6a),
(6b), (7a), (7b), (8a), (8b), and (9). We find that the
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acceleration radiation is generated by a kind of para-
metric process [8] in which both the atomic polarization
(the idler) and the radiation (the signal) are excited by
extracting energy from the atomic center-of-mass motion
(the pump). Such processes are intimately related to the
counter-rotating terms in the Hamiltonian and are dis-
carded in the rotating wave approximation.

This provides a simple picture for the generation of
acceleration radiation. The photons emitted are real. The
generation of radiation by the counter-rotating terms is
interesting, but, perhaps, no more bizarre than the earlier
demonstration of mazer emission [5] due to scattering of
atoms off the cavity interface [9]. Furthermore, we find
that the radiation may even be squeezed when S1;2 in
Eqs. (8a) and (8b) are nonvanishing. Calculation details
and experimental implications will be given elsewhere (in
preparation).

As in the quantum theory of the laser [10,11], the
(microscopic) change in the density matrix of a cavity
mode due to any one atom, ��i, is small. The (macro-
scopic) change due to N atoms is then � �

P
i��

i �
N��. Writing N � rt, where r is the atomic injec-
tion rate, we have a coarse grained equation of motion:
�
t � r��. The change ��i due to an atom injected at
time �i is

��i � �
1

�h2

Z �i	T

�i

Z �i	�0

�i

tratom�V̂V��
0�; �V̂V��00�; �atom��i�

� ��t��i���d�
0d�00;

(1)

where T is the proper time of flight through the cavity and
tratom denotes the trace over atom states. The time � is the
atomic proper time, i.e., the time measured by an observer
riding along with the atom. The cavity proper time t���
and the atomic trajectory of the atom as it passes through
the cavity, z���, are given by [12]

t��� � t0 	
1

�
sinh����; z��� �

c
�
�cosh�����1; (2)

where t0 � t�� � 0� is the moment of time in the labora-
tory (cavity) frame when the atom starts its acceleration.
Let g��� � �E0= �h be the atom-field coupling frequency
which depends on the atomic dipole moment � and the
electrical field E0 in the frame of the atom. In the case of a
running wave with a wave vector k, kz � k � v=v, the
interaction Hamiltonian in the atomic frame is

V̂V��� � �hg����âake
�i�t���	ikzz��� 	 H:c:��̂�e�i!� 	 H:c::

(3)

For simplicity, consider the copropagating atom and field,
kz � �=c, so that E0 �

����������������������������������
�c� v�=�c	 v�

p
E. Since v �

c tanh���� for a uniformly accelerated particle, we have
E0 � e���E and g��� � ge���. The operator âak is the
annihilation operator for the running wave, while �̂� is
the atomic lowering operator. Inserting Eq. (3) into Eq. (1)
and using Eq. (2), we obtain the results (4), (5), (6a), (6b),
(7a), (7b), (8a), and (8b).
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In the case of random injection times, the equation of
motion for the density matrix of the field is

d�n;n=dt � �R2��n	 1��n;n � n�n�1;n�1

� R1�n�n;n � �n	 1��n	1;n	1; (4)

where R1;2 are defined in the following. If R1 > R2, there
is a steady state solution which is thermal [10]

�n;n � e� �h�n=kBT c�1� e� �h�=kBT c�; (5a)

�nn �
X
n

n�nn �
1

e �h�=kBT c � 1
; e� �h�=kBT c �

R2

R1
;

(5b)

where an effective temperature of the field in the cavity is
T c � �h�=kB ln�R1=R2. Thus, spontaneous emission of
randomly injected ground-state atoms in the cavity re-
sults in thermal statistics of the mode excitation. Note that
the thermal statistics of the atomic excitation in the
standard Unruh effect in free space is due to spontaneous
emission into a vacuum field reservoir with a continuous
spectrum of modes.

Absorption and emission coefficients R1;2 � rjgI1;2j2

are determined by the amplitude ge�i�=�I1;2 �
� i

�h

R
�i	T
�i

V1;2d� of the matrix elements V1�ha;0jV̂Vjb;1i
and V2 � ha; 1jV̂Vjb; 0i of the interaction Hamiltonian (3),
respectively. In the particular case �i � 0, we find

I1�!� �
Z T

0
exp

�
i
�
�
e��� 	 i!�� ��

�
d�: (6a)

It is convenient to write this as

I1�!� �
�Z T

��
d��

Z 0

��
d�

�
exp

�
i
�
�
e��� 	 i!�� ��

�
;

(6b)

where �� � �1� i�=2�. We carry out the first integral
by changing the variable of integration to x �
�i��=��e��� and assume that e��T � 0. In such a case
the first integral is proportional to the ordinary gamma
function defined as ��z� �

R
1
0 e

�xxz�1dx. The second
integral may be adequately approximated by integration
by parts in the limit that �� � 1 and �

! � 1. We find

I1�!� �
i
�

	
�
�



�i�!=��

e�!=2��
	
1�

i!
�




�
iei��=��

��!

�
1	 O

	
�!

���!�2


�
: (7a)

The corresponding integral for the emission of ra-
diation I2�!� is equal to I1��!�. We proceed to calcu-
late R1 / jI1�!�j

2 and R2 / jI2�!�j
2 by noting that

��1	 i!=����1� i!=�� � ��!=��= sinh��!=��.
We find that in the limit �� !� � the emission/

absorption ratio is R2=R1 ’ �=�2�!�, which is an
enhancement by many orders of magnitude as compared
to the exponentially small value R2=R1� exp��2�!=��.
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For arbitrary values of parameters, the absorption and
emission amplitudes can be calculated as

I1;2�!� �
i
�

	
�
�



�i�!=��

e��!=2����z; ue��T� � ��z; u�;

(7b)

where z � 1� i !� , u � �i �� e
���i , and ��z; u� �R

1
u e

�xxz�1dx is the incomplete gamma function.
The above analysis clearly shows that the mechanism

of the field and atom excitation in cavity QED is the same
as for the Unruh effect in free space and is nothing but a
nonadiabatic transition due to the counter-rotating term
âa	k �̂�

	 in the interaction Hamiltonian (3), i.e., V2. The
reason for an enhanced excitation in the cavity is the
relatively large amplitude for a quantum transition
jb; 0i ! ja; 1i due to the sudden nonadiabatic switching
on of the interaction. As a result of this rapid turn on, the
initial state jb; 0i is no longer an eigenstate of the
Hamiltonian. Now, a linear superposition of the excited
states of atom and field makes up the dressed [13] ground
state of the interacting system  0 � jb; 0i � g���

�0	! ja; 1i as

well as the dressed excited state  1 � ja; 1i 	 g���
�0	! jb; 0i.

The amplitude of the bare excited state ja; 1i in  0 is
of the order of C��E0= �h�!	 �0�. The latter corre-
sponds to the atomic excitation probability �atom

aa �
jCj2 � j�E0= �h�!	 �0�j2 � jgI2j2. This can also be found
directly from the density matrix equation for the atom,
via the atomic counterpart to Eq. (1) with a trace over the
photon states instead of the tratom. This probability has the
same origin and value as the well-known Bloch-Siegert
shift of a two-level atomic transition [13], !=! �
��E0= �h�!	 �0�2, due to counter-rotating terms.

Clearly, the second term in Eqs. (6b) and (7a) repre-
sents the contributions from boundaries to the nonadia-
batic transition amplitudes [14]. In the absence of the
boundaries, the emission integral I2�!�� I1��!� in
Eqs. (6a), (6b), (7a), and (7b) becomes exponentially
small � exp���!=�� for the small parameter�=2�!�
1 since there are no stationary-phase points in the inte-
gration interval. The absorption integral I1 does have a
point of stationary phase when the atomic frequency ! is
brought into resonance with the field due to the time-
dependent Doppler shift of the mode frequency [15]
�0��� � � exp�����. This fact explains why the related
exponential factor effectively disappears from the absorp-
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tion integral (7a), je�!=2���1� i!=��j ’ �2�!=��1=2,
when �� 2�!. As a result, if there are no edge effects,
we obtain the same excitation factor R2=R1 �
exp��2�!=�� as in the Unruh effect (in free space).
This means that in order to observe the standard Unruh
result one has to extend the mode profile g�z� near the
boundaries, i.e., eliminate nonadiabatic boundary contri-
butions [second term in Eq. (6b)].

The nonadiabatic nature of the Unruh effect can be
demonstrated most clearly by following explicit deriva-
tion of the Unruh factor as a probability of the non-
adiabatic transition [16]  0 !  1 from the dressed
ground state. Indeed, the Schrödinger equation i �hd =
d� � H in the two-level case  � c0 0 	 c1 1 yields
dc1=d�	 �iE1= �h	 h _  1j 1i�c1 � �c0h _  0j 1i. The dif-
ference between the eigenenergies is, to the first order,
E1 � E0 � �h�!	 �0�. For small nonadiabatic coupling
�h _  0j 1i �

d
d� �

g���
!	�0� � !	 �0, the perturbation solu-

tion is jc1j
2 � j

R
�
�i
exp�i

R
�0
�i
��0 	!�d�00 d

d�0 �
g��0�
!	�0� d�

0j2.
If we now make the assumption of an adiabatic switching
(on and off) of the interaction g��� as in standard Unruh
effect treatments, then after integration by parts the latter
integral is reduced to the integral I2�!� � I1��!� in
Eqs. (6a) and (6b) but in the infinite limits, i.e., without
edge effects. This yields the standard Unruh factor
jc1j2 / exp��2�!=��. This derivation clearly shows the
dramatic effect of boundary contributions leading to a
large amplitude �g���=�!	 �0� of the atomic excited
state jai. Only if we eliminate the edge effects by adia-
batic switching of the interaction do we retrieve the ex-
ponentially small excitation factor.

The surprising result is that in the cavity the excitation
factor exp���h�=kBT c��R2=R1��=2�! is determined
by the first power of the same nonadiabaticity parameter
�=2�!. The reason for this effect is the existence of a
true resonance, i.e., a stationary-phase point, in the ab-
sorption coefficient [first term in Eqs. (6b) and (7a)]. As
mentioned earlier, this yields a resonance between the
atomic transition frequency and the Doppler-shifted fre-
quency of the field seen by the atom, !	 d

d� �
�
� e

���� ’ 0.
Another feature of the cavity acceleration radiation is

squeezing. If the atoms are injected at regular intervals of
times, t0i � �mi=�	 t,, where mi is an integer, all
atoms have the same phase with respect to the cavity
mode, � �

P
N
j�1 e

�2i�mj�2i�t,=N � e�2i�t, , and in-
stead of Eq. (4) we find
_�� n;n � �R1�n�nn � �n	 1��n	1;n	1 � R2��n	 1��n;n � n�n�1;n�1

	 ��S1
�������������������������������
�n	 1��n	 2�

p
�n	2;n � S2

������������������
�n� 1�n

p
�n;n�2 	 �S1 	 S2�

������������������
�n	 1�n

p
�n	1;n�1 	 H:c:: (8a)

In this case the analysis is similar to the analysis of a polarization injected laser [9], and the radiation density matrix is
far from being thermal due to squeezing factors

S1;2 � rg2�e�2i�=�
Z �i	T

�i

d�0
Z �0

�i

d�00ei��=��e
���0�i!�0���0ei��=��e

���00�i!�00���00 : (8b)

It is also possible to implement a more powerful resonant emission by ground-state atoms in a cavity, e.g., when the
center of mass of the atom is oscillating as z��� � zo cos�!o��. This can be viewed as another example of mazer action.
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In such a case, the density matrix of a cavity mode is
again found to obey Eqs. (8a) and (8b), but now

R1;2 � rg2J2p�kzo�=�/	 ��2; (9)

where p is an integer, Jp�x� the Bessel function,
/ the effective atomic decay rate, and the squeezing
terms S1;2 are governed by cross terms which go as
�rg2=�/	 ��2JpJ0 [17]. Since this is a resonant para-
metric process [Fig. 1(b)], the absorption (p � 0, ! � �)
and emission (p � 0, !	 � � p!0) coefficients (9) are
larger than for counter-rotating interactions, Eqs. (6a),
(6b), and (7a), by a resonant factor ��=�/	 ��2 [18].

In conclusion, our simple model demonstrates that
the ground-state atoms accelerated through a vacuum-
state cavity radiate real photons. For small accelera-
tion a < 2�!c, the excitation Boltzmann factor
exp�� �h�=kBT c� � �=2�! is much larger than the stan-
dard Unruh factor exp��2�!=��. The physical origin of
the field energy in the cavity and of the internal energy in
the atom is the work done by an external force driving the
center-of-mass motion of the atom against the radiation
reaction force. Both the present effect (in a cavity) and the
Unruh effect (in free space) originate from the transition
of the ground-state atom to the excited state with simul-
taneous emission of photon due to the counter-rotating
term âa	k �̂�

	 in the Hamiltonian (3). The enhanced rate of
emission into the cavity mode comes from the second
term in Eqs. (6b) and (7a)–the nonadiabatic transition at
the cavity boundaries; the standard Unruh excitation
comes from the first term in Eqs. (6b) and (7a)–the non-
adiabatic transition in free space due to the time depen-
dence of the Doppler-shifted field frequency �0 � �e���,
as seen by the accelerating atom.
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