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Electromagnetic Meissner Effect in Spin-One Color Superconductors

Andreas Schmitt,1,* Qun Wang,1,2,† and Dirk H. Rischke1,‡

1Institut für Theoretische Physik, J.W. Goethe-Universität, D-60054 Frankfurt/Main, Germany
2Physics Department, Shandong University, Jinan, Shandong, 250100, People’s Republic of China

(Received 28 February 2003; published 12 December 2003)
242301-1
It is shown that color-superconducting quark matter, where quarks of the same flavor form Cooper
pairs with spin one, exhibits an electromagnetic Meissner effect. This is in contrast to spin-zero color
superconductors where Cooper pairs consist of quarks with different flavors.
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equal. In physical systems, however, this condition may superconducting state.
Quantum chromodynamics (QCD) is an asymptoti-
cally free theory [1] and, thus, quark matter at large quark
chemical potential � is a weakly coupled system. In this
case, the dominant interaction between two quarks is
single-gluon exchange. Single-gluon exchange is attrac-
tive in the color-antitriplet channel. Consequently, at
sufficiently low temperatures, the quark Fermi surface
is unstable with respect to the formation of Cooper pairs.
Since this is analogous to what happens in ordinary super-
conductors [2], this phenomenon was termed color super-
conductivity [3].

Color superconductivity was studied from first prin-
ciples in the framework of QCD at weak coupling [4,5] as
well as in more phenomenological Nambu–Jona-Lasinio-
type models [6]. Both approaches indicate that the color-
superconducting state is the true ground state of quark
matter at any density beyond the quark-hadron phase
transition and at sufficiently low temperature. They also
agree in the magnitude of the color-superconducting gap
parameter,�, which they predict to be of the order of tens
of MeV (for quark Cooper pairs with total spin zero) at
densities of the order of 10 times the nuclear matter
ground state density. Gap parameters of this order of
magnitude may have enormous phenomenological impli-
cations, since the transition temperature to the normal
conducting phase is typically of the order of� [5,7,8]. For
instance, during the evolution of a neutron star, the
temperature ranges from a few tens of MeV down to a
few keV [9]. If its core is sufficiently dense to consist of
quark matter, this quark matter core is then very likely a
color superconductor.

Color superconductivity is more complex than ordinary
superconductivity, because quarks do not carry only elec-
tric, but also color and flavor charges. Two different quark
flavors may form Cooper pairs in the color-antitriplet,
flavor-singlet, total spin-zero channel (the so-called 2SC
phase) [3]. For three different quark flavors, the favored
state is the so-called color-flavor locked (CFL) phase
[10], with spin-zero Cooper pairs in the color-antitriplet,
flavor-antitriplet representation.

A necessary condition for pairing of quarks of differ-
ent flavors is that their respective Fermi surfaces are
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be hard to achieve. For instance, compact stellar objects
are neutral with respect to electric and color charge. This
requires the introduction of separate chemical potentials
for quarks which differ in color and flavor [11]. Imposing
the constraints of color and electric charge neutrality
leads to different values for these chemical potentials.
This effect and the mass difference between the light up
and down quarks and the heavier strange quark [12] may
then lead to different Fermi surfaces for each quark
species. If this difference is of the order of, or larger
than, the color-superconducting gap parameter �, a
color-superconducting state where quarks with different
flavors form spin-zero pairs with zero momentum is no
longer favored. Then, besides a transition to the normal
conducting state [13], there are at least four other possi-
bilities. The first two possibilities are either a displace-
ment [14] or a deformation [15] of the Fermi spheres of
the two quark species forming the Cooper pair, breaking
translational or rotational invariance, respectively. The
third possibility is an interior gap structure for the quark
species with the larger Fermi momentum [16].

The fourth possibility is that quarks of the same flavor
form Cooper pairs with total spin one [3,5,17–19]. Quarks
with the same flavor have the same mass and the same
electric charge, and thus pairing is not affected by either
a mass difference or a nonzero electric chemical potential
which may be required to fulfill the constraint of electric
neutrality. Moreover, a potentially nonzero color chemi-
cal potential does not destroy the Cooper pairs, because
we expect it to be parametrically much smaller than the
gap, �color ��2=�g�� � �, where g is the strong cou-
pling constant [20]. (A color chemical potential is neces-
sary in models which treat color as a global charge. In
QCD, the role of the color chemical potential is assumed
by a constant gluon background field A0

a [20].)
According to the results of Refs. [8,18], the gap in spin-

one color superconductors is of the order of 20–400 keV
(assuming that the gap in the 2SC phase is of the order
of 10–100 MeV). The critical temperature is therefore of
the order of 10–400 keV [8]. Consequently, when the core
of a neutron star cools below this temperature, it could
very well consist of quark matter in a spin-one color-
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The interesting question is how such a state affects the
properties of the star and whether this leads to observable
consequences. The best known properties of a neutron
star are its radius and mass, which are determined by
the equation of state. A recent study [21] shows that radii
and masses of compact stellar objects with a color-super-
conducting quark matter core do not change appreciably
from the values expected for ordinary neutron stars.
Another property of a neutron star with potentially ob-
servable consequences is its magnetic field. Because of an
admixture of protons in neutron matter, the core of an
ordinary neutron star is a superconductor, and magnetic
fields experience the Meissner effect. However, if the
core of a neutron star is a spin-zero color-superconductor
(for instance, in the 2SC or CFL phase), there is no
electromagnetic Meissner effect [22]. Since charge
neutrality may favor a spin-one over a spin-zero color-
superconducting state, a natural question is whether the
electromagnetic Meissner effect is also absent in a spin-
one color superconductor. In order to answer this ques-
tion, in this Letter we study the pattern of symmetry
breaking of the local gauge symmetries, and then also
present the results of an explicit calculation of the
Meissner masses.

In ordinary superconductors, the electromagnetic
gauge group U�1�em is broken due to the fact that the
electrons in a Cooper pair carry electric charge. This
leads to the electromagnetic Meissner effect; i.e., mag-
netic fields penetrate only a finite distance into the super-
conductor. The inverse distance can be associated with a
nonzero photon mass, the so-called Meissner mass. Since
quarks are not only electrically charged but also carry
color, besides the electromagnetic U�1�em symmetry also
the SU�3�c gauge symmetry of the strong interaction is
broken in a color superconductor. This leads to the color
Meissner effect; i.e., the gluons obtain Meissner masses
and color-magnetic fields are expelled. The question is
whether all eight gluons and the photon become massive.
This depends on the particular pattern of how the local
symmetries are broken in the color superconductor. If
there is a residual local symmetry, the corresponding
gauge bosons remain massless. This residual symmetry
group of SU�3�c � U�1�em leaves the gap matrix � in-
variant,

�gc � gem���gTc � gTem��
!

�; (1)

where gc 2 SU�3�c, gem 2 U�1�em, and T denotes the
transpose. In general, the gap matrix � is a matrix in
color, flavor, and Dirac (spin) space [3–6]. Since pairing
occurs in the attractive color-antitriplet channel, the color
structure of the gap matrix corresponds to the color-
antitriplet 33c representation of the SU�3�c gauge group.
In a spin-one color superconductor, the spin structure of
the gap matrix corresponds to the symmetric spin triplet
3J representation of the SU�2�J spin group, which is also a
representation of SO�3�J. The gap matrix is diagonal in
flavor space, since quarks in a Cooper pair carry the same
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flavor. For the moment, let us consider quark matter with
a single flavor only, Nf � 1. The case of several quark
flavors (where each flavor pairs at its respective Fermi
surface) will be discussed below. The gap matrix can be
written as

� � �i
aJa � vi; (2)

where Ja and vi �a; i � 1; 2; 3� are bases of 33c and 3J,
respectively, and �i

a is the order parameter. The form of
the order parameter defines the phase of the condensate.
As in 3He, there is a multitude of possible phases for spin-
one condensates [23]. In this Letter we consider only the
polar phase and the color-spin locked (CSL) phase [8,18].
The order parameters in these phases are

��i
a�polar � �a3�

i3; ��i
a�CSL � �ia: (3)

In the polar phase, the condensate points in a fixed
direction in real space, which breaks the global spatial
symmetry group SO�3�J to SO�2�J. The condensate also
points in a fixed direction in color space, which sponta-
neously breaks the local SU�3�c gauge symmetry to a
residual SU�2�c gauge group. From Eq. (1) we deduce
that the residual subgroup which leaves the order parame-
ter invariant is generated by the three generators of
SU�2�c [corresponding to T1; T2; T3 of the original
SU�3�c] and the generator ~QQpolar � Q	 2

���
3

p
qT8, where

T8 is one of the generators of SU�3�c and Q � q1J is the
generator of U�1�em. The constant q is the electric charge
of the single quark flavor considered here (2=3 for u
quarks and 	1=3 for d or s quarks). The generator Q is
proportional to the unit matrix in spin triplet space, 1J,
since all states of the spin triplet have the same electric
charge. Consequently, the symmetry breaking pattern is
SU�3�c � U�1�em ! SU�2�c � ~UU�1�, where ~UU�1� is gener-
ated by ~QQpolar. The existence of a nontrivial residual gauge
symmetry is equivalent to the fact that there are charges
with respect to which the Cooper pairs are neutral. These
are the two color charges corresponding to the SU�2�c
gauge symmetry and the ~QQpolar charge corresponding to
the ~UU�1� gauge symmetry. The gauge boson of the latter is
a superposition of the photon and the eighth gluon of
SU�3�c. This superposition is mathematically given by
an orthogonal rotation of the original gauge fields by an
angle �. In general, a generator ~QQ � Q �T8 results in a
mixing angle given by cos2� � g2=�g2  �2e2�, where e
is the electromagnetic coupling constant [22]. In our case
the mixing angle, �polar, is determined by this expression
with � � 	2

���
3

p
g. Since e� g, the mixing angle is

small, �polar ’ 2
���
3

p
qe=g� q=3. Consequently, the main

contribution to the gauge boson of the local ~UU�1� symme-
try comes from the original photon, with a small admix-
ture of the eighth gluon. This justifies calling this gauge
boson the ‘‘new’’ photon. There is no electromagnetic
Meissner effect, since the new photon can penetrate the
color-superconducting phase. This is similar to other
color-superconducting phases, for instance, the 2SC
phase or the CFL phase [22]. In both cases, there is a
242301-2



TABLE I. Zero-temperature masses (squared) calculated for
the polar phase and the CSL phase of a spin-one color super-
conductor. The gluon masses are given in units of g2�2=�6�2�,
the mixed masses in units of eg�2=�6�2�, and the photon
masses in units of e2�2=�6�2�. The constants  and ! are
defined as  � �3  4 ln2�=27 and ! � �6 	 4 ln2�=9.

m2
aa m2

a� m2
��

a 1 2 3 4 5 6 7 8 1–7 8 9
Polar 0 0 0 1

2
1
2

1
2

1
2

1
3 0 2��

3
p q 4q2

CSL !  ! !  !  ! 0 0 6q2
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~UU�1� gauge symmetry and thus no electromagnetic
Meissner effect.

In the CSL phase, the order parameter breaks SU�3�c �
SO�3�J to the diagonal subgroup SO�3�cJ [18]. This is
analogous to the breaking of color-flavor symmetries in
the CFL phase, where SU�3�c � SU�3�f ! SU�3�cf. The
residual SO�3�cJ and SU�3�cf groups are global sym-
metries, and thus not gauged. This similarity between
CSL and CFL phases does, however, not extend to the
behavior concerning electromagnetism. Unlike the CFL
phase, it turns out that for the CSL phase there is no
nontrivial subgroup of SU�3�c � U�1�em that leaves the
gap matrix invariant; i.e., the only possible solution to
Eq. (1) is gc � gem � 1. Consequently, the symmetry
breaking pattern is SU�3�c � U�1�em ! 1. This is equiva-
lent to the fact that a Cooper pair in the CSL phase is not
neutral, neither with respect to ordinary electric charge
nor with respect to any possible new combination of color
and electric charge. This fact has the physical conse-
quence that there is an electromagnetic Meissner effect
for the CSL phase [18].

In the following, we confirm the above qualitative
arguments by an explicit calculation of the Meissner
masses. The Meissner mass is defined as the zero-energy,
zero-momentum limit of the spatial �ii� components of
the polarization tensor [24]

m2
ab � limp!0�

ii
ab�0; p�; a; b � 1; . . . ; 8; 9; (4)

where the first eight indices correspond to the gluons, and
the ninth index to the photon, 9 � �. If there is mixing of
gluons and photons, the 9 � 9 Meissner mass matrix m2

ab
is not diagonal. The Meissner masses for the physically
relevant modes are obtained by diagonalizing this matrix.
In weak coupling, the polarization tensor may be com-
puted in one-loop approximation. At zero temperature,
only the quark loop contributes. Our calculation follows
the method of Ref. [24]; details are deferred to a future
paper [25]. It turns out that the gluon part of the mass
matrix is diagonal, m2

ab � �abm2
aa for a; b � 1; . . . ; 8. In

Table I we collect all results.
For the polar phase, the vanishing masses for gluons 1,

2, and 3 indicate the unbroken SU�2�c subgroup. The
nonzero Meissner mass m2

8� reflects the mixing of the
eighth gluon field, A8, and the photon, A9 � A�. In terms
of the physically relevant modes, ~AAa, the Meissner mass
matrix is diagonal,X

ab

Aam2
abAb �

X
a

~AAa ~mm2
a

~AAa: (5)

For a � 1; . . . ; 7, ~AAa � Aa (and, correspondingly, ~mm2
a �

m2
aa), whereas the new gluon, ~AA8, and the new photon, ~AA�,

are obtained by an orthogonal rotation of A8 and A�,
�

~AA8
~AA�

�
�

�
cos# sin#
	 sin# cos#

��
A8

A�

�
; (6)

where tan�2#� � 2m2
8�=�m

2
88 	m2

���.With the numbers of
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Table I we find that the rotation angle # is identical to the
mixing angle �polar found in the above group-theoretical
argument. The Meissner masses for the rotated gauge
fields are

~mm 2
8 �

�
1

3
g2  4q2e2

�
�2

6�2 ; ~mm2
� � 0: (7)

The massless new photon confirms that there is no elec-
tromagnetic Meissner effect in the polar phase, whereas
there is a color Meissner effect for the new gluon.

For the CSL phase, the particular pattern for the gluon
masses reflects the residual global SO�3�cJ symmetry
which is generated by a combination of the antisymmetric
Gell-Mann matrices T2, T5, and T7 and the generators of
SO�3�J. In contrast to the polar phase, now all mixed
masses are zero, indicating that there is no mixing be-
tween gluons and the photon. All gauge bosons have a
nonzero Meissner mass. This coincides with the above
group-theoretical argument.

Let us now discuss the situation with more than one
quark flavor, where the quarks of each flavor separately
form spin-one Cooper pairs. In general, each quark flavor
has a different chemical potential, �i, i � 1; . . . ; Nf. In
this case, the results of Table I have to be modified. All
gluon Meissner masses m2

aa have to be multiplied by a
factor

P
i��i=��

2. In the mixed masses m2
a� we have to

replace the single quark electric charge q by a factorP
iqi��i=��

2. Finally, one has to substitute the square of
the charge q2 in the photon masses m2

�� by a factorP
i�qi�i=��

2.
For the polar phase, these modifications have the fol-

lowing effect. Only if
P
i;jqi�qi 	 qj���i�j�

2 � 0, there
is a massless combination of photon and gluon. For a
system with two quark flavors, for instance, u and d or
u and s, this condition is equivalent to �2

u�2
d � 0 or

�2
u�2

s � 0, respectively. This means that, for these two
combinations of flavors, there is always a Meissner effect,
unless the chemical potential of one of the two quark
flavors is zero; i.e., this flavor is absent. For a two-flavor
system consisting of d and s quarks, however, the above
condition is always trivially fulfilled; i.e., there is no
Meissner effect in this case. This is to be expected, since
d and s quarks carry the same electric charge and thus
appear as one single flavor with respect to electromag-
netic interactions. For three flavors, the above condition is
242301-3
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equivalent to �2
u��

2
d �2

s� � 0, and can be fulfilled only
if either �u � 0 or �d � �s � 0. Both cases have been
discussed above. We therefore conclude that, for more
than one quark flavor, there is an electromagnetic
Meissner effect in the polar phase, unless all quarks carry
the same electric charge.

In the CSL phase, the mixed masses always vanish,
while the results for the gluon masses and the photon
mass are modified by the same factors as for the polar
phase. Thus, the conclusion that there is no photon-gluon
mixing and an electromagnetic Meissner effect in the
CSL phase remains valid also for more than one quark
flavor.

While spin-zero color superconductors could be of
type II at small � [26,27], a spin-one color superconduc-
tor is most likely always of type I because the ratio of the
penetration depth to the coherence length is of order
��=�e�� � 10	3 �100 MeV=�e��� � 1. Consequently,
the magnetic field is completely expelled from the core
of a compact stellar object if it is a spin-one color super-
conductor. This is true unless the magnetic field exceeds
the critical field strength for the transition to the normal
conducting state. The magnetic field in neutron stars is
typically of the order of 1012 G. This is much smaller than
the critical magnetic field which, from the results of
Ref. [27], we estimate to be of the order of 1016 G.

In conclusion, a compact stellar object with a core
consisting of quark matter in the spin-one color-super-
conducting state is, with respect to its electromagnetic
properties, different from an ordinary neutron star: ordi-
nary neutron star matter is commonly believed to be an
electromagnetic superconductor of type II, while a spin-
one color superconductor is of type I. The question
whether neutron star matter is a type-I or type-II super-
conductor has recently stirred a lot of attention [28]
because it was shown that type-II superconducting matter
is incompatible with the observation of pulsars with pre-
cession periods of order one year [29]. The presence of
spin-one color-superconducting quark matter in the pul-
sars’ core could explain this observation.
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