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Determining Neutrino Mass from the Cosmic Microwave Background Alone
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Distortions of cosmic microwave background temperature and polarization maps caused by gravita-
tional lensing, observable with high angular resolution and high sensitivity, can be used to measure the
neutrino mass. Assuming two massless species and one with mass m�, we forecast ��m�� � 0:15 eV
from the Planck satellite and ��m�� � 0:04 eV from observations with twice the angular resolution and
�20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of
atmospheric neutrino oscillations requires �m2

� * �0:04 eV�2.
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detailed considerations [8] show that the sum of the active
neutrino masses (which is what the CMB is most sensitive
to) should be at least 0.06 eV.

[13,14]. In this transform space the effect of lensing by
mode ��L� [harmonic transform of ��n�] is to shift
power from, e.g., ~aaT�L� l� to aT�l�. Lensing also mixes
Introduction.—Results from the Wilkinson Microwave
Anisotropy Probe (WMAP) [1] show the standard cos-
mological model passing a highly stringent test. With this
spectacular success of the cosmic microwave background
(CMB) as a clean and powerful cosmological probe, and
of the standard model as a phenomenological description
of nature, it is timely to ask what can be done with yet
higher resolution and higher sensitivity such as offered by
the Planck instruments and beyond. In this Letter we
mostly focus on neutrino mass determination, with a brief
discussion of other applications.

Eisenstein et al. [2] found that the Planck satellite
can measure neutrino mass with an error of 0.26 eV.
This sensitivity limit is related to the temperature at
which the plasma recombines and the photons last scatter
off of the free electrons, Tdec ’ 0:3 eV. Neutrinos with
m� & Tdec do not leave any imprint on the last-scattering
surface that would distinguish them from m� � 0.

Neutrinos with mass m� & Tdec would affect the am-
plitudes of gravitational potential peaks and valleys at
intermediate redshifts. Massive neutrinos can collapse
into potential wells when they become nonrelativistic,
while massless ones freely stream out. The observed
galaxy power spectrum (which is proportional to the
potential power spectrum at sufficiently large scales),
combined with CMB observations, can be used to put
constraints on m� [3]. At present such an analysis yields
an upper bound on m� of �0:3 eV [4,5].

The alteration of the gravitational potentials at late
times changes the gravitational lensing of CMB photons
as they traverse these potentials [6,7]. Including the grav-
itational lensing effect, we find that the Planck error
forecast improves to 0.15 eV. We also show that more
ambitious CMB experiments can reduce this error to
�0:04 eV. These mass ranges are interesting because
the atmospheric neutrino oscillations require that at least
one of the active neutrinos have m� > 0:04 to 0.1 eV. More
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Tomographic observations of the galaxy shear due to
gravitational lensing can achieve sensitivities to m� simi-
lar to what we find here [9,10]. Our work is distinguished
by its sole reliance on CMB temperature and polarization
maps which have different potential sources of systematic
error. Complementary techniques are valuable since both
of these will be very challenging measurements.

The most stringent laboratory upper bound on neutrino
mass comes from tritium beta decay end-point experi-
ments [11] which limit the electron neutrino mass to
&2 eV. Proposed experiments plan to reduce this limit
by 1 to 2 orders of magnitude by searching for neu-
trinoless double beta decay (��0�) [12]. A Dirac mass
would elude this search, but theoretical prejudice favors
(and the seesaw mechanism requires) Majorana masses.
Like the CMB and galaxy shear observations, these fu-
ture ��0� experiments will be extremely challenging.

Lensing of the CMB.—The intensity and linear polar-
ization of the CMB are completely specified by the
Stokes parameters I, Q, and U which are related to the
unlensed Stokes parameters (denoted with a tilde) by
X�n� � ~XX�n� �n� where X stands for I, Q, or U. The
deflection angle, 
n, is the tangential gradient of the
projected gravitational potential,

��n� � 2
Z

dr
�rn̂n; r��r� rs�=�rrs�; (1)

where r is the coordinate distance along our past
light cone, s denotes the CMB last-scattering surface, n̂n
is the unit vector in the n direction, and 
 is the three-
dimensional gravitational potential.

The statistical properties of the I, Q, and U maps are
most simply described in the transform space: aT�l�,
aE�l�, and aB�l�, where aT is the spherical harmonic
transform of I, and aE and aB are the curl-free and
gradient-free decompositions, respectively, of Q and U
2003 The American Physical Society 241301-1



P H Y S I C A L R E V I E W L E T T E R S week ending
12 DECEMBER 2003VOLUME 91, NUMBER 24
~aaE into aB and any ~aaB into aE [15], thus generating scalar
B (curl) mode correlations.

Lensing smooths out the features in the two-point
functions, also called angular power spectra, C��0

l , where
ha��l�a


�0 �l0�i � C��0

l 
�l� l0�=�2�l�l� 1�
 and � stand
for T, E, or B [6]. As explained later, in our analysis we
use the unlensed power spectra, ~CC��0

l . The information
from lensing is added through the two-point function of
the lensing potential h��L��
�L0�i � C��

L 
�L�L0�=
�2�L�L� 1�
, which can be inferred from the tempera-
ture and polarization map four-point functions [16].
In Fig. 1 we plot the deflection angle power spectrum,
Cdd

l � l�l� 1�C��
l .

We calculate the two-point functions using a publicly
available code, CMBFAST [6], that was modified to include
a scalar field dark energy component, to calculate Cdd

l ,
and to include the effect of massive neutrinos on the
recombination history (through the expansion rate). We
use the Peacock and Dodds prescription to calculate the
nonlinear matter power spectrum [17].

Effect of neutrinos.—The lower panel in Fig. 1 shows
the differences in the power spectra between our fiducial
model and the exact same model but with one of the three
neutrino masses altered from 0–0.1 eV. The error boxes
are those for CMBpol (described below; see Table I). The
Cdd

l are noise dominated at l > 600 for CMBpol.
The signature of a 0.1 eV neutrino in the angular power

spectra, in the absence of lensing, is at the 0.1% level.
Such small masses are only detectable through their
effect on lensing, which comes through their influence
FIG. 1 (color online). Top panel: Deflection angle power
spectrum Cdd

l for the fiducial model (m� � 0). Bottom panel:
100 � dCdd

l =dm� � ��m�=C
dd
l � (dark line) and 100 �

dCdd
l =dwx � ��wx=C

dd
l � (light line) for �m� � 0:1 eV and

�wx � 0:2.
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on the gravitational potential. Replacing a massless com-
ponent with a massive one increases the energy density
and therefore the expansion rate, suppressing growth. The
net suppression of the power spectrum is scale dependent
and the relevant length scale is the Jeans length for
neutrinos [18–20], which decreases with time as the
neutrino thermal velocity decreases. This suppression of
growth is ameliorated at scales larger than the Jeans
length at matter-radiation equality, where the neutrinos
can cluster. Neutrinos never cluster at scales smaller than
the Jeans length today. The net result is no effect on large
scales and a suppression of power on small scales, result-
ing in the shape of 
Cdd

l =Cdd
l in Fig. 1.

Error forecasting method.—The power spectra we in-
clude in our analysis are ~CCTT

l , ~CCTE
l , ~CCEE

l (unlensed), and
Cdd

l . We do not use the lensed power spectra to avoid the
complication of the correlation in their errors between
different ‘ values and with the error in Cdd

l . Using the
lensed spectra and neglecting these correlations can lead
to overly optimistic forecasts [21]. If we include the
lensed spectra instead of the unlensed ones, the expected
errors on wx and m� for CMBpol (see Table I) shrink by
about 40% and 30%, respectively.

The distortions to the angular power spectra due to a
0.1 eV neutrino and changes of order 10% in wx are very
small. We have taken care to accurately forecast the con-
straints possible in this mass range. First, we make a
Taylor expansion of the power spectra to first order in
all the cosmological parameters. Then, given the ex-
pected experimental errors on the power spectra, the
expected parameter error covariance matrix is easily
calculated.

The Taylor expansion works better and susceptibility to
numerical error is reduced with a careful choice of the
parameters used to span a given model space [2,22–24].
We take our set to be P � f!m;!b;!�; �s; wx; zri;
k3Pi

��kf�; ns; n0
s; yHeg, with the assumption of a flat uni-

verse. The first three of these are the densities today
(in units of 1:88 � 10�29 g=cm3) of cold dark matter
plus baryons, barons, and massive neutrinos. The next
two are the angular size subtended by the sound hori-
zon on the last-scattering surface and the ratio of dark
energy pressure to density. The Thompson scattering
optical depth for CMB photons, ', is parametrized by
TABLE I. Experimental specifications. We use the unlensed
spectra (~CCTT

l , ~CCTE
l , ~CCEE

l ) only at l < 2000. For � reconstruction
we use only data with l < lT;E;B

max .

Experiment lTmax lE;B
max� (GHz) �b �T �P

Planck 2000 2500 100 9:20 5.5 1

143 7:10 6 11
217 5:00 13 27

SPTpol (fsky � 0:1) 2000 2500 217 0:90 12 17
CMBpol 2000 2500 217 3:00 1 1.4
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TABLE II. Error forecasts. Standard deviations expected from Planck, SPTpol, and CMBpol.

Experiment m� (eV) wx lnPi
� nS n0

S �s (deg) ' ln!m ln!b yHe

Planck 0.15 0.31 0.017 0.0077 0.0032 0.00016 0.0088 0.0082 0.0084 0.012
SPTpol 0.18 0.49 0.018 0.01 0.006 0.00019 0.0088 0.014 0.01 0.017
CMBpol 0.044 0.18 0.017 0.0029 0.0017 0.000 05 0.0085 0.0041 0.0028 0.0048
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the redshift of reionization zri. The primordial poten-
tial power spectrum is assumed to be k3Pi

��k� �
k3
fP

i
��kf��kf�

ns�1�n0Sln�k=kf�, with kf � 0:05 Mpc�1. The
fraction of baryonic mass in helium is yHe. We Taylor
expand about P � f0:146; 0:021; 0; 0:6; � 1; 6:3; 6:4 �
10�11; 1; 0; 0:24g.

We follow Ref. [25] to calculate the errors expected
in ~CCTT

l , ~CCTE
l , and ~CCEE

l given in Table I. For errors on Cdd
l

we follow Ref. [16]. The errors on the unlensed spectra in
the regime where lensing is important (deep in the damp-
ing tail) are certainly underestimated because recon-
struction of the unlensed map from the lensed map will
add to the errors. However, this is not a problem since we
limit all the unlensed spectra to l < 2000, and a further
restriction to l < 1500 (where lensing is least important)
only increases the error on m� by about 10% for CMBpol.

Experiments.—We consider Planck [26], a high-
resolution version of CMBpol [27], and a polarized bo-
lometer array on the South Pole Telescope [28] that we
will call SPTpol. Their specifications are given in Table I.
We assume that other frequency channels of Planck and
CMBpol (not shown in the Table) will clean out non-
CMB sources of radiation perfectly. Detailed studies have
shown foreground degradation of the results expected
from Planck to be mild [29–31]. At l > 3000 emission
from dusty galaxies will be a significant source of con-
tamination. The effect is expected to be more severe for
temperature maps. Hence we restrict temperature data to
l < 2000 and polarization data to l < 2500.

Results.—We emphasize the ability of the experiments
to simultaneously determine Pi

�, wx, and m� [32]. These
all affect the amplitude of P� at late times, the latter two
due to their effect on the rate of growth of density per-
turbations. If we were only sensitive to the amplitude of
Cdd

l , then there would be an exact degeneracy between
these three parameters. However, the l dependence of the
response of Cdd

l to these parameter variations breaks this
would-be degeneracy, allowing for their simultaneous
determination.

The effect of m� can easily be disentangled from that
of wx. We have already discussed the l dependence of
@ lnCdd

l =@m� shown in Fig. 1 as resulting from the scale
and time dependence of @ lnP�=@m�. The l dependence of
@ lnCdd

l =@wx has the opposite sense. Although the sup-
pression of P� for increasing wx is nearly k independent,
the effect is larger at late times; hence the radial projec-
tion gives a larger effect at low ‘. The effects of m� and
241301-3
wx are sufficiently distinct to allow for their simultaneous
determination. We point out that the effect of wx is more
pronounced for larger values due to two reasons: (1) dark
energy starts to dominate earlier (which implies larger
uniform suppression); (2) perturbations in dark energy on
large scales are enhanced for large wx.

The difference in the response of Cdd
l to m� and wx

allows for, e.g., Planck to detect the acceleration of
the Universe [wx <�1=�3"x�] at the 2� level. Such a
confirmation would be valuable given the deep theoreti-
cal implications of acceleration [33]. Hu [21] previ-
ously noted this result obtained with the assumption
that m� � 0.

As is well known, the Pi
� can be determined indepen-

dently of the lensing signal, through use of a signal at
large angular scales. One combines CEE

l and CTE
l at

l & 20 where they are proportional to Pi
�'2 and Pi

�',
respectively [25,34], with the TT, EE, and ET spectra at
20 & l & 2000 where they are proportional to Pi

�e�2'.
If we assume a single-step transition for the ionization

history Planck can achieve ��'� � 0:005 [2]. However,
foreground contamination [30] and modeling uncertainty
in the ionization history [35] can increase this uncer-
tainty. For these reasons we conservatively ignore polar-
ization data at l < 30 and instead set a prior, by hand, of
��'� � 0:009, including the l < 30 polarization data
would (perhaps artificially) achieve a smaller ��'�. In
the end, ' is determined (only slightly) better than this
prior because there is some constraint on Pi

� from the
lensing signal. Note that since Pi

�e�2' is so well deter-
mined, we always expect ��lnP�� � 2��'� (see Table II).

An extended period of reionization, as suggested by the
combination of WMAP and quasar observations [36], may
have large spatial fluctuations in the ionization fraction.
Such ‘‘patchy’’ reionization would lead to a large diffuse
kinetic Sunyaev-Zeldovich contribution to CTT

l at high l
[37,38], possibly larger than the lensing contribution.
Fortunately the analogous effect in the polarization is
much smaller. For a conservative upper bound on how
patchy reionization could degrade ��m��, we restrict the
temperature data to l < 1000 and find ��m�� � 0:045 eV
for CMBpol and 0.34 eV for Planck.

The primary motivation for CMBpol is the detection
of the B mode due to gravity waves produced in inflation.
The amplitude of this signal would tell us directly the
energy density during inflation. Following the calculation
in [39,40] we find that a 3� detection is possible for
241301-3



P H Y S I C A L R E V I E W L E T T E R S week ending
12 DECEMBER 2003VOLUME 91, NUMBER 24
CMBpol if the energy density during inflation is greater
than ,min � �2 � 1015 GeV�4; ,1=4

min is an order of magni-
tude smaller than the GUT scale.We note that ,min / 1=',
approximately, for 0:05 < ' < 0:2, and we have assumed
' � 0:1. This scaling with ' suggests that the reionization
feature in the B mode at the largest angular scales is
important and therefore a full-sky experiment is neces-
sary to achieve this sensitivity level.

The scalar spectrum determined from high-resolution
CMB observations (the constraining power comes from
primary CMB) can also be a useful probe of inflation, as
studied recently by [41]. If nS � 1 � 0:07, the central
value in fits to WMAP and other observations [4], then
inflationary models generically predict n0

S � �nS � 1�2 �
0:005, which will be detectable at the 3� level by
CMBpol.

Determining !b and yHe to high precision will facili-
tate precision consistency tests with big bang nucleosyn-
thesis (BBN) predictions. It will also be useful in
constraining nonstandard BBN. For example, determin-
ing !b and yHe to high precision allows strong constraints
to be put on the number of relativistic species N (or
equivalently the expansion rate) during BBN. If ��yHe�
is small, then ��N� � ��yHe�=0:013, which for CMBpol
works out to ��N� � 0:4. Constraints on N have impor-
tant repercussions for neutrino mixing in the early
Universe, and hence on neutrino mass models [42].

Conclusions.—Gravitational lensing of the CMB is a
promising probe of the growth of structure and the fun-
damental physics that affects it. High sensitivity, high-
resolution maps will allow us to measure the lensing
signature well enough to simultaneously constrain m�,
wx, and P�. A future all-sky polarized CMB mission
aimed at detecting gravitational waves is likely to suc-
ceed in determining neutrino mass as well.

We thank J. Bock, S. Church, W. Hu, M. Kamion-
kowski, A. Lange, S. Meyer, and M. White for useful
conversations.
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