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Dynamical Robustness of Lévy Search Strategies
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(Received 3 September 2002; published 12 December 2003)
240601-1
We study the role of dynamical constraints in the general problem of finding the best statistical
strategy for random searching when the targets can be detected only in the limited vicinity of the
searcher. We find that the optimal search strategy depends strongly on the delay time � during which a
previously visited site becomes unavailable. We also find that the optimal search strategy is always
described for large step lengths ‘ by a power-law distribution P�‘� � ‘��, with 1<���� � 2. Our
findings appear to remain valid even if arbitrary energy costs of locomotion are considered.
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tails. Lévy stable densities thus provide a generalization
of the Gaussian stable density. In addition, an important
parameter of P�‘� is the characteristic length ‘0, which

mainly independent of the presence of short-range corre-
lations arising from phenomena such as learning and
predator-prey relationships [16]. Nevertheless, only from
Quantifying random search patterns has been a chal-
lenging interdisciplinary problem [1,2] that is attracting
growing interest [3–9]. The practical relevance of the
problem spans areas that include theoretical physics, in-
formation technology (information foraging theory [10]),
industrial processes, and theoretical ecology [1,2,5].
Fundamental aspects of random search problems can
be explained in terms of Lévy walks and Lévy flights
[11,12]. In particular, the random search problem of find-
ing the most efficient strategy of searching for randomly
located objects (targets) whose exact locations are not
known a priori has motivated several studies [3–5,13]. A
conventional way of modeling random search is to as-
sume the searcher performs a random walk in which the
direction of each step is independent of previous steps and
the length ‘ of each step is taken from a distribution P�‘�.

In the biological literature, studies usually tend to
assume that P�‘� is a Poisson or some other short-tailed
distribution with finite variance. In this case the motion of
the searcher becomes equivalent to regular diffusion as
described by a Gaussian probability density. A recent
study [4] proposed that P�‘�, for many species, may
have long power-law tails:

P�‘� � ‘��: (1)

In the case 1<�< 3, the variance of this distribution
diverges, extremely long steps dominate the motion of the
searcher, and the probability density of its displacement
converges in the asymptotic ‘ ! 1 limit to a Lévy stable
density with index � � �� 1. In stable probability den-
sities, after a large number of steps the distribution of the
resulting composed step has the same step distribution as
the original distribution, with identical behaviors in the
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determines the lower cutoff of the power-law distribution
(1), below which it becomes essentially constant. In this
case, ‘0 is related to the proportionality coefficient in the
power-law decay by

‘0 � lim
‘!1

�
P�‘�

‘�

�� 1

�
1=���1�

; (2)

and represents the persistence length of the random walk,
being also associated, in the context of animal foraging,
with the inertia of the animal motion.

Here we assume that in general a forager can be mod-
eled by a random walk in which the distribution of steps is
given by Eq. (1), with the parameter 1<� � 3 [14]. The
natural question that arises concerns how to determine
the optimal value of � that provides the maximal amount
of targets (e.g., food) found per unit length traveled by the
searcher. The studies in Refs. [4, 5, 13, 16, 17] have shown
that if target sites are sparse and can be visited any
number of times (unrestricted, nondestructive search),
then �opt � 2 leads to the optimal search strategy.
However if a target site can be visited only once (destruc-
tive search), then � takes on an optimal value �opt ! 1,
corresponding essentially to rectilinear ballistic motion
between targets, since there is no advantage in returning
to a previously visited site. In addition, experimental data
on foraging for different animal species appear to agree
with the theoretical predictions [3–5,13].

One advantage of a statistical analysis approach relates
to how it can lead to general and robust results, indepen-
dently of the peculiarities of the particular system
studied. For the random search problem, the findings
concerning the optimal strategy appear to be valid for
any dimension of the foraging space [5,13] and seem to be
2003 The American Physical Society 240601-1
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the dynamical details of specific real systems can one
infer relevant parameters that may be important for their
characterization. For animal foraging especially, the dy-
namical search details can give the biologist studying a
particular species information about the environment or
metabolic aspects of the species. Hence, in this work we
investigate the influence of two dynamical aspects rele-
vant to the general random search problem.

We first study the role of the delay time � during which
a previously visited site becomes unavailable for future
visits. There are two general kinds of strategies. If a found
site regenerates very quickly, then the best strategy in-
volves waiting near the site for it to regenerate, leading to
Brownian motion. However, if there is no advantage in
waiting for the previously found site to regenerate, and if
target sites are not likely to be found in the immediate
vicinity of the searcher, then we find that the best search
strategy always involves power laws, with the optimal
exponent restricted to the interval 1<�opt��� � 2.
Specifically, we find that � 	 2 for � ! 0 (nondestruc-
tive limit) and � ! 1 for � ! 1 (destructive limit). In
this regime we also find that space-limited Gaussian
strategies [14] (corresponding to � 
 3) lead to rather
inefficient searches. In the context of animal foraging this
result is also related to the problem of target revisitability
and accounts for the fact that realistic targets cannot be
revisited an infinite number of times, nor do they neces-
sarily disappear forever in nature. We then also show that
the introduction of an arbitrary (energetic) cost function
assigned to the search trajectory does not change the
optimal value �opt, although in some cases its presence
significantly limits the range of physically meaningful
values for � [17].

To introduce the delay time �, we modify the foraging
model proposed in Ref. [4] by allowing the searcher to
look for randomly distributed sites according to the fol-
lowing three locomotion rules:

(A) If there are target sites located within a ‘‘direct
vision’’ distance r (which in principle can be larger than
‘0), the forager detects one of them with some probability
and then moves on a straight line to the detected site.

(B) If no target sites within r are detected, the searcher
chooses a direction at random and a step length ‘j from
the probability distribution (1), and then moves with
constant velocity v to the new point, constantly look-
ing for a target site within a distance r along its way. If
the searcher does not detect a site, it stops after traversing
the distance ‘j and chooses a new direction and a new
distance ‘j�1; otherwise, it proceeds to the target as in
Rule (A).

(C) In the case a target site is detected by applying
Rules (A) or (B), it becomes unavailable for future visits
during a time �, after which it regenerates.

Rule (A) is essentially based on a short-range detection
mechanism of target sites, constituting the short flight
length regime. On the other hand, Rule (B) actually
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involves a random search and governs the intermediate
and long flight regimes. So, for Rule (B) to apply the
characteristic spacing  of the target-site Poisson distri-
bution should considerably exceed r, i.e.,  � r. This
represents the cases of low and intermediate concentra-
tions of target sites. In contrast, when target sites are
plentiful, searches of type (B) become rare and the for-
aging process is driven by the detection events (A), with a
Poisson distribution.

In Rule (B) the searcher truncates its path if it finds a
target site within the distance r along its way, so the
effective probability distribution in fact corresponds to
a so-called ‘‘truncated Lévy distribution’’ [18] with finite
moments, the cutoff length being associated with 
[4,18], even though the convergence to Gaussian behavior
occurs only after an extremely large number of steps [18].
Indeed, this upper cutoff emerges naturally in real sys-
tems, due to their finite sizes, or, in the case of animal
foraging, due to biological constraints which, e.g., can
lead the animal to starve to death if no food site is located
within a certain maximum range.

As was shown in the one-dimensional case (see p. 155
of Ref. [15]), for any power-law tailed distribution, if the
forager starts from a point x � z of an interval 0; �,
where 0< z< 1, and if =‘0 ! 1, then the optimal
strategy is achieved provided

�opt � 2�
2

lnz
� o

�
1

lnz

�
: (3)

We can relate the distance z to the velocity of the forager
and the time of recovery of the target site, where

z �
v�


: (4)

If � ! 0, then z ! 0, lnz ! �1, and therefore �opt � 2.
When z > 1=e2, Eq. (3) gives �< 1, which corresponds
to the motion along a straight line with constant velocity
(nonlocalized regime).

In the case of d dimensions, the exact solution of the
average total flight distance is not known; however, the
results obtained in the one-dimensional case should still
have validity, since in d dimensions the forager moves
along a one-dimensional corridor of cross section propor-
tional to rd�1. The average length  of this corridor
between two target sites plays the role of the length of
the one-dimensional interval

�
1

�rd�1
; (5)

where � is the density of the target sites. This quantity is
equivalent to the mean free path in the problem of gas
diffusion.

Equation (3) was obtained in Ref. [15] using hyper-
geometric functions. To illustrate the one-dimensional
derivation in simple terms, we approximate the aver-
age length of the step by the expression calculated [4]
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FIG. 1. Efficiency � vs � in two-dimensional searches, for
several values of �, r � ‘0 � 1, v � 1, and target area density
� � 10�4 � � r�. When target sites are allowed to be visited
at any time �� ! 0�, a power-law long-distance Lévy distribu-
tion with � � �opt 	 2 optimizes the search, in agreement
with Eqs. (3) and (11). In contrast, for � � 1, the maximum in
� tends to downshift towards � � 1, corresponding to recti-
linear ballistic motion between targets. Qualitatively similar
results are found for one-dimensional searches.
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for a power-law distribution P�‘ > x� � �‘0=x�
��1 for

x > ‘0, P�‘ > x� � 1 for x � ‘0,

h‘i 	
2��

‘1��
0

�
�� 1

2��

�
2�� � ‘2��

0

‘1��
0

�
; (6)

truncated at larger distances by  and at small dis-
tances by ‘0. For �< 2 this expression is dominated by
the upper cutoff . For � > 2 it is dominated by the
lower cutoff ‘0. We take the d-independent scaling of
the average number of steps before the forager finds a
target site as [15]

Ns �

�
x�� x�

‘20

�
���1�=2

; (7)

where the initial position of the forager is x � v�.
The average length hLi traveled by the forager before it

reaches a target site can be approximated as a product of
the average step length and the average number of steps

hLi � Nsh‘i; (8)

so that, by introducing Eq. (7) with z � x=, we get

hLi � 
�
1� �=‘0����2���� 1�

2��

�
�z� z2����1�=2: (9)

If z=‘0 � 1 and �< 2, then hLi can be approximated as

hLi 	


2��
�z� z2����1�=2; (10)

which has a minimum at

� � 2�
2

ln�z� z2�
; (11)

thus coinciding with Eq. (3) for small z [19].
Figure 1 displays two-dimensional simulation results

as a function of �. When target sites are allowed to be
visited at any time (� ! 0; unrestricted, nondestructive
limit), a power-law long-distance Lévy distribution with
� � �opt 	 2 optimizes the search, in agreement with
Eqs. (3) and (11). In contrast, for � � 1 the maximum in
� tends to downshift towards � � 1; corresponding to
rectilinear ballistic motion between targets (destructive
limit). Qualitatively similar results are found for one-
dimensional searches.

An entirely different strategy arises if r � ‘0 or � r,
in which cases Rule (A) fairly dominates over Rule (B),
thus leading to optimal Gaussian searches ��opt 
 3�. In
particular, for r � ‘0 waiting near the old site until it
regenerates becomes competitive. Therefore, �opt 	 2
arises as a compromise between the � � 1 (by exploring
new sites without trying to return to visited sites) and the
� 
 3 (wait near the visited site for it to regenerate)
strategies.
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The above discussion, based on a statistically defined
efficiency function, does not take into account the influ-
ence of dissipative phenomena that might be important in
realistic searches such as animal foraging. We therefore
introduce an arbitrary locomotion energy cost function
f�hLi�, assigned to the average distance traveled between
two target sites and conditioned only by being monotoni-
cally increasing. The new efficiency function is now �E �
hEi=hLti, where the average total length of the walk, hLti,
can be approximated [20] by the product NhLi, where N
denotes the mean number of visited sites. The mean net
energy hEi gained by the searcher in finding randomly
distributed target sites (e.g., calories, nutrients, etc. in the
case of animal foraging) is similarly written as hEi �
NhEsi, with hEsi � "� f�hLi� the net mean energy
gained per target site found, and " the gross mean energy
gained per target. Here a natural constraint, hEi > 0,
emerges since the average energy cumulated in the forag-
ing must be positive.

By writing

�E � �"� f��; (12)

where � � 1=hLi is the statistical efficiency (defined as
the number of targets found divided by total distance
traveled [4]), the extremization of �E implies
F���d�=d� � 0, with F��� � "� f� �df=d�. The
possible extrema of �E thus arise either from the extrema
of � or from the zeros of F. Regarding the latter, we
recall the energy constraint hEsi � "� f > 0 and ob-
serve that df=d� < 0, since f is an increasing function
240601-3
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of hLi � 1=�. Therefore, F > 0 and the extrema of �E

coincide with those of the statistical efficiency �. Finally,
since d2�E=d�2 < 0 at the extrema points, they are char-
acterized as maxima of the energy efficiency. However,
although the introduction of an arbitrary cost function
does not change the results for the optimal value �opt, its
presence might significantly limit the range of acceptable
values for � due to the energy constraint hEi > 0.

In summary, we have found that the best search strat-
egy for a searcher to follow is strongly dependent on the
target-site revisitability delay time � during which a
previously visited site becomes unavailable for future
visits. When there is no advantage in waiting for the
previously found site to regenerate, and when target sites
are not likely to be found in the immediate vicinity of the
searcher, then we find that the best search strategy always
involves power laws, with the optimal exponent restricted
to the interval 1<�opt��� � 2. Specifically, we find that
� 	 2 for � ! 0 (nondestructive limit) and � ! 1 for
� ! 1 (destructive limit). In this regime we also find that
space-limited Gaussian strategies [14] (corresponding to
� 
 3) lead to rather inefficient searches. The optimal
value �opt remains robust with respect to the introduction
of an arbitrary cost function assigned to the search tra-
jectory so long as ‘0 
 r and does not depend on the
details of the dissipative process. Nevertheless, the pres-
ence of such energetic constraints significantly limits the
range of acceptable values for �.
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