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Averaging for Solitons with Nonlinearity Management
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We develop an averaging method for solitons of the nonlinear Schrödinger equation with a
periodically varying nonlinearity coefficient, which is used to effectively describe solitons in Bose-
Einstein condensates, in the context of the recently proposed technique of Feshbach resonance
management. Using the derived local averaged equation, we study matter-wave bright and dark solitons
and demonstrate a very good agreement between solutions of the averaged and full equations.
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alternative for the generation of coherent nonlinear
wave structures. where 
��� 1� � 
��� and

R
1 
��� d� � 0. Using
Dispersive nonlinear wave equations are appropriate
mathematical models for various nonlinear phenomena
in fluid mechanics, optics, plasmas, and condensed
matter physics. The equation that generically emerges in
the description of envelope waves is the nonlinear
Schrödinger (NLS) equation [1–3] of the form

iut � �D�u� �juj2u� V�x�u: (1)

Here u�x; t� is a complex envelope field, V�x� is an ex-
ternal potential, � is the Laplacian operator in multi-
dimensions, and D and � are the coefficients of the
dispersive and nonlinear terms, respectively.

In a number of physical applications, the coefficientsD
and � exhibit temporal periodic variations. When D �
D�t�, the NLS equation (1) describes the dispersion man-
agement (DM) scheme in fiber optics, which is based on
periodic alternation of fibers with opposite signs of the
group-velocity dispersion. The DM scheme supports ro-
bust breathing solitons [4], which are well described
through the averaging method by the integral NLS equa-
tion [5]. Extensions of the averaging method were devel-
oped for strong management with large variations of the
dispersion coefficient [6] and for weak management with
small variations of the dispersion coefficient [7].

When � � ��t�, the NLS equation (1) has applications
in optics for transverse beam propagation in layered
optical media [8], as well as in atomic physics for the
Feshbach resonance [9] of the scattering length of
interatomic interactions in Bose-Einstein condensates
(BECs). The periodic variation of the scattering length
by means of an external magnetic field provides an ex-
perimentally realizable protocol for the generation of
robust matter-wave breathers [10], and for their persis-
tence against collapse in higher dimensions [11,12].
Solitary waves have become a focal point in studies of
BEC both theoretically and experimentally [13,14] due to
their coherence properties. Hence, nonlinearity manage-
ment using Feshbach resonance may provide a viable
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Given the importance of applications of Eq. (1) with a
periodically varying nonlinearity coefficient, we extend
the averaging method of [5,6] to solitons with strong
nonlinearity management, when the periodic variations
of the nonlinearity coefficient are large in amplitude.
Comparing with earlier works, we note that the averaged
equation for strong DM in [5,6] is nonlocal, whereas our
averaged equation [see Eq. (10)] for strong nonlinearity
management is local. Also, our averaging method is more
general than the asymptotic expansion method, exploited
for weak DM [7] and for weak nonlinearity management
[11]. As the averaged equation obtained herein is simple,
we find numerically solitary waves of the averaged equa-
tion and compare with those of the full problem, showing
the excellent agreement between the two.

Derivation of the averaged equation.—We start
with Eq. (1) with D � 1 and � � ��t�. The potential
V�x� is left arbitrary but we keep in mind that the
magnetic and laser trappings relevant to BEC applica-
tions impose parabolic and periodic potentials, respec-
tively. Also, we restrict ourselves to one spatial
dimension, but generalization of the method to multi-
dimensions is straightforward. The resulting so-called
Gross-Pitaevskii (GP) equation [3] describes the ‘‘cigar-
shaped’’ BECs and reads

iut � �uxx � ��t�juj2u� V�x�u; (2)

where the nonlinearity coefficient (proportional to the
scattering length in the BECs) ��t� 	� � ��t� is a
smooth, sign-indefinite, periodic function of period 	.
We assume that the period 	 of the nonlinearity manage-
ment is small compared to the characteristic propagation
time of nonlinear waves, while the nonlinearity varia-
tions are large in amplitude. In this case, we decompose
��t� into the mean-value part 
0 and a large fast-varying
part 
, as

��t� � 
0 �
1

	

���; � �

t
	
; (3)

0
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u�x; t� � v�x; �� exp
�
�i

Z �

0

��0�jvj2�x; �0� d�0

�
; (4)

we remove the large fast variations of the nonlinearity
coefficient. In the averaging method (see [6] for details),
we decompose solutions of the problem with variable
coefficients into a slowly varying mean part w�x; t� and
a small, fast-varying part v1�x; ��:

v�x; �� � w�x; t� � 	v1�x; �;w�x; t��; t � 	�: (5)

The varying part v1�x; �;w� is a periodic function of �
with unit period. To leading order, this condition is sat-
isfied if w�x; t� satisfies the averaged equation:

iwt � �wxx � 
0jwj
2w� V�x�w� 2i�1wxjwj

2
x

� i�1wjwj
2
xx � �2w�jwj

2
x�

2; (6)

where �1 �
R

1
0 ���� d�, �2 �

R
1
0 �

2��� d�, and ���� �R
�
0 
��

0� d�0. The averaging method is simplified with
the gauge transformation,

w�x; t� �  �x; t� exp�i�1j j
2�x; t�	; (7)

which reduces (6) to the following form:

i t � �1 j j2t � � xx � 
0j j2 � V�x� 

�� �j j2x�
2; (8)

where � � �2 � �2
1. Using the balance equation ij j2t �

� 
  x � 
   x�x, which follows from (8), we rewrite the
averaged equation in the final form:

i t � � xx � 
0j j
2 � V�x� �� �j j2x�

2

� i�1 � 
   x � 
  x �x: (9)

The averaged equation (9) is the main result of this
Letter. It is seen to be equivalent to the integral averaged
equation derived for strong dispersion management in
fiber optics [5,6], but it is a local evolution equation. A
similar local equation was also derived for weak disper-
sion management in fiber optics [7], when the last two
terms of (9) are small compared to the leading-order NLS
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FIG. 1. Bright solitons (left) and twisted solitons (right) of Eq.
subplot shows the solution maximum for different values of 
0.
solutions: The left panel shows the solution for 
0 � �0:8 (solid li
and �0:02 (stars), and the right panel for 
0 � �0:8 (solid line),
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equation. We emphasize that Eq. (9) is derived for strong
nonlinearity management and it captures all terms in the
same, leading order of the averaging method.

Solitons in BECs.—The simplest standing waves of
Eq. (9) are obtained through the standard ansatz [1]:

 �x; t� � ��x�ei!t; (10)

where ��x� solves the second-order differential equation:

��00 �!�� V�x��� 
0�3 � 4���0�2�3 � 0: (11)

As a typical example of a smooth periodic variation
of the scattering length [11,12], we use the sinusoidal
function ��t� � 
0 � 
1 sin�2�t�, in which case � �

2

1=�8�
2�. We also set 	 � 1 and choose j!j 2 �0:1; 0:5	

to ensure validity of Eq. (11), when 	� 2�=j!j. We also
use the parabolic potential V�x� for the magnetic trapping
of the BEC, V�x� � 1

2�
2x2, where �2 2 �0:02; 0:4	.

To estimate actual physical quantities corresponding to
the above values of the normalized parameters, we first
note that the cases 
0 < 0 (
0 > 0) are relevant to an
attractive (repulsive) BEC, such as 7Li (85Rb), character-
ized by a negative (positive) scattering length a � �1 nm
(a � 0:8 nm), in a magnetic field B � 650 G (B �
159 G). These values of the scattering lengths set
the units in the parameters 
0 and 
1, which may take
different values as long as the magnetic field B is varied
[9]. The number of atoms N in the two BECs is N � 104

(N � 2
 105) for �2 � 0:4 (�2 � 0:02) for the 7Li con-
densate, and N � 4
 103 (N � 7:5
 104) for �2 � 0:4
(�2 � 0:02) for the 85Rb condensate. Since we deal with
cigar-shaped BECs, the magnetic trap is highly aniso-
tropic, characterized by the confining frequencies !k �
2�
 3:6 Hz and !? � 2�
 360 Hz in the axial and
transverse directions, respectively. Thus, the time and
space units in the results that follow are 44.2 ms and
2 �m (for 7Li) or 44.2 ms and 0:6 �m (for 85Rb).

Numerical results.—Using Eq. (11), we can now obtain
the solution ��x� for a given set of parameters
(
0; 
1;�; !), by means of the Newton method. We also
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(11) with 
0 < 0, 
1 � 0:5, �2 � 0:4, and ! � 0:5. The top
The bottom subplot shows the potential (dashed line) and the
ne), �0:6 (dash-dotted line), �0:4 (dotted line) �0:2 (circles),
�0:6 (dash-dotted line), and �0:37 (circles).
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FIG. 2. Same as Fig. 1 but for Thomas-Fermi clouds (left) and dark solitons (right) obtained from Eq. (11) with 
0 > 0, 
1 � 0:5,
! � 0:5, while �2 � 0:4 (left) and �2 � 0:02 (right). The bottom panel shows the potential (dashed line) and the solutions for

0 � 0:8 (solid line), 0:6 (dash-dotted line), 0:4 (dotted line), 0:2 (circles), and 0:01 (stars). Notice that in the case of the dark
soliton (right subplot), the solution profiles are practically indistinguishable between 
0 � 0:8 and 
0 � 0:2.
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perform parameter continuations, to follow the solution
branches as the parameters vary.

Figure 1 shows two solutions of Eq. (11) with 
0 < 0
(the attractive BEC), 
1 � 0:5, �2 � 0:4, and ! � 0:5.
The solution in the left panel is the bright soliton, which
has the form ��x� � �2!=
0�

1=2sech�!1=2x� when 
1 �
� � 0. The solution in the right panel is the so-called
twisted soliton, which corresponds to a concatenation of
two separated bright solitons of opposite parity (see, e.g.,
[15]). The twisted soliton does not exist when 
0 < 0 and
� � 0. Higher-order solutions with multiple nodes (ze-
ros) may also exist in Eq. (11) with 
0 < 0 and � � 0, in
some parameter domains.

Figure 2 shows two solutions of the averaged equation
(11) with 
0 > 0 (the repulsive BEC), 
1 � 0:5, and ! �
�0:5. In the case of 
0 > 0, the localized solutions of
Eq. (11) bifurcate from linear modes trapped by the
parabolic potential V�x�, such that an infinite number of
solitons with multiple nodes (zeros) exists for larger
negative values of !. The solution in the left panel for
�2 � 0:4 is the ground state, often approximated by the
Thomas-Fermi cloud [10]. The solution in the right panel
for �2 � 0:02 is the (embedded in the Thomas-Fermi
cloud) dark soliton which, in the case of 
1 � � � 0,
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FIG. 3. Domain of existence of dark (top panel for �2 �
0:02) and bright (bottom panel for �2 � 0:4) solitons of
Eq. (11) with j!j � 0:5. The solutions exist above and below,
respectively, the corresponding curves of the �
1; 
0� plane.
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has the form ��x� � �j!j=
0�
1=2tanh��j!j=2�1=2x	 when


1 � � � 0. The dark soliton is a localized solution of
Eq. (11) with 
0 > 0 and � � 0. Notice that the regular
dark soliton asymptotes to a nonvanishing amplitude
when � � 0, while it asymptotes to 0 in the presence of
the magnetic trap.
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FIG. 4 (color online). Temporal evolution of the bright soliton
with 
0 � �0:5, 
1 � 1, �2 � 0:4, and ! � 0:5. The top
panel shows evolution of the (spatial) maximum of ju�x; t�j2

as a function of time. The middle panel shows the solution
ju�x; t�j2 at t � 137:3 (solid line) and t � 138 (dashed line),
their average (circles), and the initial configuration (dash-
dotted line). The latter practically coincides with the average.
The bottom panel shows a contour plot of ju�x; t�j2 in �x; t�.
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FIG. 5 (color online). Same as Fig. 4, but for the dark soliton
with 
0 � 0:5, 
1 � 1, �2 � 0:02, and ! � �0:5. The maxi-
mum and minimum snapshots correspond to t � 128:4 and t �
130:2. The dash-dotted line of the theoretical prediction (initial
condition) again coincides with the average denoted by the
circles.
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Figure 3 shows two parameter �
0; 
1� continuations
of the dark (top panel for �2 � 0:02) and bright (bot-
tom panel for �2 � 0:4) soliton solutions of Eq. (11)
with j!j � 0:5. The branch of dark solitons exists above
the bifurcation curve in the top panel, whereas the
branch of bright solitons exists below the curve in the
bottom panel. The two curves pass through the ori-
gin 
0 � 
1 � 0. We note that the domain of existence
of dark and bright solitons shrinks for increasing values
of 
1.

Finally, we examine how well the averaged Eq. (11)
approximates bright and dark solitons of Eq. (2). In our
numerical simulations of Eq. (2), we initialize the wave
function, using the spatial profile obtained from (11), and
then observe whether the temporal evolution of Eq. (2)
preserves the average profile of Eq. (11).

Figure 4 shows the temporal evolution of the bright
soliton with 
0 � �0:5, 
1 � 1, �2 � 0:4, and ! � 0:5.
The periodic variations of ��t� in Eq. (2) lead to compli-
cated oscillations of the solution’s maximum. While the
solution oscillates between single-humped and double-
humped solitons (a scenario that bears analogies to the
observations of [10]), the average of the two extreme
240201-4
solitons (at the maximum and minimum amplitudes) is
practically indistinguishable from the profile ��x� of
Eq. (11).

Figure 5 shows the temporal evolution of the dark
soliton with 
0 � 0:5, 
1 � 1, �2 � 0:02, and ! �
�0:5. We notice that the center of the dark soliton re-
mains at the origin x � 0, without any oscillations. Only
the maxima of juj2�x; t� display periodic oscillations of
small amplitude. The average of the extreme solitons is
again essentially identical to the profile ��x� of Eq. (11).

In conclusion, we have derived and studied the aver-
aged equation (9) for the NLS (GP) equation (2) with
periodic modulation of the nonlinearity coefficient. Our
results are of broad interest to diverse areas of atomic and
optical physics, as well as of nonlinear and, also, mathe-
matical physics. We have identified numerically several
branches of solitary waves of the averaged stationary
equation (11). We have also compared solutions of the
averaged and full equations, obtaining a very good
agreement.
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[14] V. M. Pérez-Garcı́a et al., Phys. Rev. A 57, 3837 (1998);
L. Salasnich et al., Phys. Rev. A 65, 043614 (2002); Y. B.
Band et al., Phys. Rev. A 67, 023602 (2003).

[15] P. G. Kevrekidis et al., New J. Phys. 5, 64 (2003).
240201-4


