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Quantum Logic Approach to Wave Packet Control
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We study control of wave packets with a finite accuracy, approaching it as quantum information
processing. For a given control resolution, we define the analogs of several quantum bits within the
shape of a single wave packet. These bits are based on wave packet symmetries. Analogs of one- and
two-bit gates can be implemented using only free wave packet evolution and coordinate-dependent ac
Stark shifts applied at the moments of fractional revivals. As in quantum computation, the gates form a
logarithmically small set of basis operations which can be used to approximate any unitary trans-
formation desired for quantum control of the wave packet dynamics. Numerical examples show the
application of this approach to control vibrational wave packet revivals.
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transformation by applying the same pulse many times
at the expense of exponentially growing control time [5].

Consider a wave packet ��t� � nCn�t��n, with am-
plitudes Cn�t� / exp��iEnt� distributed around a state
Advances in femtosecond control of coherent mole-
cular dynamics have stimulated theoretical [1] and ex-
perimental [2] efforts aimed at realizing logical gates
and quantum computing algorithms in atoms and mole-
cules, especially using the feedback control methods
[3,4]. In this Letter we pass the connection between quan-
tum control and quantum computation in the opposite
direction, studying how the perspective of quantum in-
formation processing can help to implement goals of
quantum control — specifically, the control of wave
packet dynamics.

An N-level system can carry only a K � log2N amount
of information, just like a K-bit quantum computer. This
suggests that the complexity of controlling an N-level
system might scale similarly, i.e., �log2N. In a K-bit
quantum computer, any unitary transformation within
the N � 2K-dimensional Hilbert space can be approxi-
mated using O�K � log2N� basic one- and two-bit gates.
We show how one can identify and implement O�log2N�
basic operations on a wave packet, sufficient to approxi-
mate any unitary evolution with the resolution of 1=Nth
of the orbit.

Questioning the number of basic elementary opera-
tions needed for control refers to the question of what
resources—laser pulse bandwidth, peak intensity, num-
ber of pixels in the pulse shaper, etc.—are required. There
is a tradeoff between the complexity of the control pulse
and the control efficiency. On the one hand, if a laser pulse
can be shaped on an arbitrarily fine time scale, one can
almost always generate N2 different parameters needed
to implement any unitary transformation in an N-level
system in a finite time [5,6]. The number of experimental
‘‘knobs’’ (e.g., the flexibility of the pulse shaper) can be
decreased at the expense of time needed and accuracy of
the control. Even with a fixed (duration and intensity)
pulse one should be able to approximate any desired
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These, however, are statements about the existence of a
solution and rely on the assumption that N is fixed.

Most constructive solutions rely on either intuitively
clear schemes for specific state-to-state transformations
(most notably Brumer-Shapiro and Tannor-Kosloff-Rice
approaches [4]) or on the numerical optimization pro-
cedure. There is a very limited number of general con-
structive schemes, all requiring O�N� different resonant
frequencies: for state-to-state transformation, see an ele-
gant solution in [7], and for generating the desired N � N
matrix in O�N2� steps, see, e.g., [8].

Analogs of logical gates would offer algorithmic and
physical prescriptions of how the control of both states
and matrices can be implemented with a sequence of
standard transformations. Then, one may be able to ap-
proach the speed of control associated with a quantum
computer using a small (�log2N) number of basic ele-
mentary operations.

To implement a quantum logic approach to control, we
take a time-domain (wave packet) perspective. In the
wave packet experiments the number of levels involved
may change during control operations; controlling a wave
packet means controlling its shape and position.We define
analogs of logical qubits based on the wave packet shape
and symmetries, independently of the number of levels in
the wave packet. We then construct analogs of logical
gates for systems with quadratic dispersion, using mo-
lecular vibrations as an example. The gates utilize only
free wave packet evolution and phase kicks made by a
relatively weak coordinate-dependent ac Stark shift, ap-
plied at the moments of fractional wave packet revivals.
We show that free evolution in combination with phase
kicks implements a complete set of logical gates for a
wave packet. Hence, it allows for complete control of the
wave packet evolution within the accuracy defined by the
number of qubits. P
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jn0i (En;�n are the energies and wave functions of the
states). Just as with a superposition of optical waves, the
wave packet can be described by a carrier and an envelope
[9]. The carrier is given by the stationary wave function
�n0

while the wave packet envelope f is defined as

f�t; ~� 

X
n

Cn�t� exp�i�n� n0�~�: (1)

It moves along the classical orbit associated with jn0i,
and ~ is the phase (angle) of that motion [9]. For equi-
distant spectrum En � En0

� !0�n� n0� the envelope is
f�t; ~� � f�~�!0t� � f��, and its shape is unchanged
during the motion, which occurs with the period T0 �
2�=!0. Anharmonicity in the spectrum En � En0

�
!0�n� n0�  ��n� n0�

2 leads to the wave packet
spreading and revivals: after time Trev � 2�=� the
wave packet relocalizes (revives) at its initial position.
At the fractional revival time Trev=2M the wave packet
splits into M orthogonal clones Fi�� spaced by � �
2�=M [10].

Figure 1 is obtained by propagating the initial wave
packet on the Cl2-like potential modeled as a Morse os-
cillator V�x� �D�1� e�ax�2 �D with x � R� Req, D �
2:47 eV, and a � 1:07 a:u: The wave packet with reduced
mass m � 31 270 a:u: starts as Gaussian, Cv�t � 0� /
e��v�v0�

2=�2
, with v0 �38 and ��4=

�������
ln2

p
(i.e., FWHM�

8 levels). Near v � 38 the vibrational period is T0 �
130 fs and Trev � 8:31 ps. The fractional revival about
t � Trev=8 is immediately visible in the envelope repre-
sentation [Eq. (1) and Fig. 1, inset], which removes carrier
oscillations and brings out the underlying symmetries in
the wave function.

The definition of wave packet ‘‘bits’’ in terms of f�� is
illustrated in Fig. 2 for a two-bit system. These states are
defined as four orthogonal superpositions of the ‘‘basis’’
wave packets Fi obtained from the initial wave packet at
the fractional revival time Trev=8 (the four orthogonal
clones in Fig. 1, inset). In general, for K bits we divide
~ � 0 . . . 2� into 2K equal intervals. The states of the bits
are determined by the symmetry of f�� with the resolu-
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FIG. 1. Wave packet (j�j2) made of �8 eigenstates in a Morse
oscillator at t � T0=8  Trev=8 and its envelope as the function
of the classical angle  (inset).
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tion increasing in powers of 2. Reminiscent of the fast
Fourier transform, the lowest bit distinguishes between
f�� even or odd on the whole orbit, the second bit dis-
tinguishes parity on every half of the orbit, the third
would do it for every quarter, etc. For K-bit computation,
structures finer than 2�=2K in f�� are unresolved.

Thus, all basis wave packets in phase correspond to the
ground state j0; . . . ; 00i. A flip of the first (lowest) bit
corresponds to multiplying f�� by ei� � �1 on the
second half of the phase orbit,  � � . . . 2�. A flip of
the second bit corresponds to multiplying f�� by ei� on
the second and the fourth quarters of the orbit, thus
doubling the modulation frequency. To flip the third bit
one doubles the modulation frequency again, etc.

Each wave packet bit distinguishes, on its own scale,
not only between ‘‘odd’’ and ‘‘even,’’ but also between
‘‘left’’ and ‘‘right.’’ As is clear from Fig. 2, the states
�j0i  j1i�=

���
2

p
and �j0i � j1i�=

���
2

p
of the first bit corre-

spond to the wave function concentrated on the left side
( < �) or on the right side ( > �) of the whole orbit.
The states �j0i  j1i�=

���
2

p
and �j0i � j1i�=

���
2

p
of the sec-

ond bit describe the wave function concentrated on the left
or the right sides of each half orbit, the third bit would do
the same for each quarter orbit, and so on.

We now identify analogs of single-bit and two-bit
logical operations and demonstrate them for a two-bit
system in a Morse oscillator. We begin with an analog
of Rabi oscillation in a single qubit.

As seen from Fig. 2, flipping the first bit requires
changing the phases of two basis wave packets on the
right side of the orbit by �. This operation flips the first bit
independently of the state of the second bit, i.e., performs
both j00i , j01i and j10i , j11i transitions. In general,
for the jth bit the phase orbit  � 0 . . . 2� is divided into
J � 2j equal parts, and on every second one of these parts
the envelope f�� is multiplied by exp�i��. This proce-
dure performs the operation

UR � ei�=2

�
cos�=2 �i sin�=2

�i sin�=2 cos�=2

�
(2)
θ θ (π)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

-- ++ |11>|f(
θ )

|

0.0

0.5

1.0

-- ++ |10>|f(
θ )

|

0.0

0.5

1.0

--++ |01>|f(
θ )

|

0.0

0.5

1.0

++++ |00>|f(
θ )

| F0 F1 F2 F3

FIG. 2. Four orthogonal basis states of the envelope function
for the two-bit system. The signs give relative phases of the
basis wave packets.
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on the jth bit while all others are unaffected. Equation (2)
can be derived by applying the above procedure to the
�j0i � j1i�=

���
2

p
states of the jth bit: one is unaffected

while the other acquires a global phase exp�i��. Up to
the phase factor ei�=2 UR is equivalent to Rabi oscillation
between the states j0i and j1i of the jth qubit.

A phase shifter can be implemented by a local modi-
fication of the potential, i.e., by nonresonantly coupling it
to another potential energy surface. This results in an ac
Stark shift, i.e., slightly shifts the potential near the
turning point while the laser field is on. A wave packet
moving through the turning point acquires extra phase
ei�S where �S is the change in the classical action. The
nonresonant pulse must be timed within the window that
the wave packet spends near the turning point. This
restricts the number of basis wave packets that can be
cleanly addressed, the number of qubits that can be en-
coded, and, hence, the control over the wave packet
shape: a one-bit control does not resolve below a half
orbit, two-bit control does not resolve below a quarter
orbit, etc.

Numerical simulations [Fig. 3(a)] show how such a
phase shifter flips the first bit for the same initial wave
packet and surface as in Fig. 1 (see the Fig. 3 caption for
the pulse parameters). The pulse nonresonantly couples
the main surface near the inner turning point to an
auxiliary surface also chosen as a Morse oscillator.
Shifted down by the energy of one photon, the auxiliary
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FIG. 3. Numerical simulations of first bit flip (a), CNOT-type
gate (b),(c), and Hadamard transform on the first bit (d).
Transitions are labeled on the panels. Solid line: jf��j2; dashed
line: phase of f��. Pulse envelope is e��t=�T �

8
. (a) FWHM �

T0=2 � 65 fs with coupling %E � 5:47 � 10�3 a:u:,
(b),(c) FWHM � T0=4 � 32:5 fs and %E � 6:04 � 10�3 a:u:,
(d) FWHM � T0=2 � 65 fs and %E � 5:47 � 10�3=

���
2

p
a:u:
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surface is V 0�x� � D0f1 � exp��a0�x #��g2 �D0  �E
with D0 � 5:44 eV, �E � 4:02 eV, # � 0:2, and a0 �
1 a:u: The electronic dipole matrix element is assumed
R independent. Figure 3(a) shows that the phase of the last
two basis wave packets is flipped by �, as desired. Errors
such as the narrowing or widening of the basis wave
packets are visible in Fig. 3 but remain unresolved (until
accumulated) by the two-bit description, which does not
see below a quarter orbit.

A phase shifter can also be used for multibit gates. For
K bits, phase shifting of a single basis wave packet re-
sults in a K-bit operation. Figures 3(b) and 3(c) show the
result of numerical simulation for the controlled-NOT

(CNOT)-type gate in the two-bit system. Applying the
laser pulse for the quarter period when the wave packet
F2 passes the turning point does not change the second bit
if the first bit is in the state �j0i  j1i�=

���
2

p
[left, Fig. 3(b)],

but flips the second bit if the first one is in �j0i � j1i�=
���
2

p

[right, Fig. 3(c)].
Changing the phases of basis wave packets is not

sufficient — one also needs to change their relative am-
plitudes. This yields the ability to approximate an arbi-
trary single-bit gate. For example, the Hadamard states of
the first bit used in the previous example require merging
half of the basis wave packets with their counterparts
which are a half orbit away. To implement the Hadamard
transform on the first bit we have to transfer the state
j00i into �j00i  j01i�=

���
2

p
(left), the state j01i into

�j00i � j01i�=
���
2

p
(right), and likewise for the states j10i

and j11i — all using the same operation.
Wave packet spreading and revivals give a natural way

to accomplish this goal. Indeed, waiting for a fractional
revival Trev=4 and correcting phases one transfers a single
basis wave packet into two packets on the opposite sides
of the orbit with an arbitrary relative phase. Similarly,
four packets with arbitrary phases can be obtained from
a single wave packet at Trev=8, using the phase operation.
Conversely, any four or two wave packets can be merged
into one. This gives a guideline for implementing
Hadamard transforms. Figure 3(d) shows a simulation
of the revival-based Hadamard transform ĤH1 for the first
bit, for the same model system as above. It is achieved by
applying a �=2 phase shift on the  > � part of the orbit
and waiting for Trev=4. Hadamard transforms for higher
bits are less trivial, but still possible [11].

As an example of possible control schemes, Fig. 4
shows how the bit operations control the revival structure
and evolution within the vibrational period. The pulse
parameters (see Fig. 4) are well within the present-day
technology. Figure 4(a) shows hR�t�i � h��t�jRj��t�i of
the same vibrational wave packet as used for Figs. 1 and 3.
Oscillations of the initially localized wave packet are
damped by its spreading. Strong relocalization of the
wave packet occurs near the half (t � Trev=2) and the
full revival.

The only difference between ��Trev=4� and ��3Trev=4�
is that the first bit is flipped. Hence, flipping the first bit at
237901-3
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FIG. 4. Control of wave packet revivals by logical operations.
Dashed lines show when short control pulses with envelope
e��t=�T �

8
are applied. (a) Free evolution. (b) Each operation uses

FWHM � 65 fs pulses with %E � 5:47 � 10�3 a:u: (c) Each
operation uses two FWHM � 32:5 fs pulses with %E � 6:04 �
10�3=

���
2

p
a:u: applied to packets 2 and 4. (d) Each operation

uses two FWHM � 32:5 fs pulses with %E � 6:04 �
10�3=

���
2

p
a:u: applied in an alternating manner to packets 1, 3

and 0, 2.
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Trev=4 will bring the system to 3Trev=4. This is shown in
Fig. 4(b): the revival near t � Trev=2 is now � out of
phase compared to t � Trev=2 but identical to t � Trev in
Fig. 4(a). Thus, the arrival of the revived wave packet to
the turning point is shifted by half of the vibrational
period T0=2. Small oscillations of hRi immediately after
the first bit-1 flip are the result of small errors of the
operation. However, these errors are removed by the
second flip of the first bit at t=Trev � 3=4.

The difference between ��Trev=8� and ��7Trev=8� is a
�=2 rotation of the second bit. The control pulse in
Fig. 4(c) performs a �=2 rotation of bit 2 at t=Trev �
1=8; 3=8; 5=8; . . . . Now full revivals are accelerated to
occur at every Trev=4. The amplitude of subsequent re-
vivals decreases: the errors add constructively. Here every
�=2 rotation was implemented by adding a �=2 phase
shift to packets 1 and 3. Alternatively, one can first apply a
�=2 shift to packets 0 and 4 at Trev=8 followed by a �=2
shift to packets 1 and 2 at 3Trev=8, etc. (i.e., alternating
�=2 and ��=2 rotations of the second bit); see Fig. 4(d).
Now the errors add destructively: the amplitude no longer
decreases as in 4(c).

We have illustrated the ideas of the method using vibra-
tional wave packets, but the same approach can be applied
to many other systems with regular spectra, including
classical waveguides. A study of the rotational wave
packets will be published elsewhere [12]. Note that none
of the existing intuitive control schemes is suited for the
kind of control shown in Fig. 4. They either require exact
knowledge of all the amplitudes Cn (see [7]) or rely on
real transitions and absence of spreading (see [4]). A
numerical or an experimental optimal control scheme
237901-4
could probably find the same nonresonant mechanism as
our solution, but it is well known that such solutions are
always complex and hard to interpret.

To summarize, we studied the control of wave packets
with a finite resolution —1=Nth of the phase-space orbit.
We have introduced a mechanism of control, which uti-
lizes free wave packet evolution and short kicks by a
coordinate-dependent ac Stark shift applied at the mo-
ments of fractional revivals. We have shown how, using
the envelope representation of the wave packet, one can
introduce qubitwise description of the system based on
progressive scale symmetries of the wave packet enve-
lope. Analogs of �log2N single-bit and two-bit gates can
be implemented in a relatively simple manner. Thus, one
needs �log2N different turn-on and turn-off frequencies
for the single nonresonant ac field in order to be able to
approximate any unitary transformation with the accu-
racy of 1=Nth of the orbit. The result naturally applies to
controlling wave packet revival structures.
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