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Defect Structure around Two Colloids in a Liquid Crystal
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This Letter investigates the defect structures that arise between two colloidal spheres immersed in a
nematic liquid crystal. Molecular simulations and a dynamic field theory are employed to arrive at
molecular-level and mesoscopic descriptions of the systems of interest. At large separations, each sphere
is surrounded by a Saturn ring defect. However, at short separations both theory and simulation predict
that a third disclination ring appears in between the spheres, in a plane normal to the Saturn rings. This
feature gives rise to an effective binding of the particles. The structures predicted by field theory and
molecular simulations are consistent with each other.
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range order elastic effects that govern LC dynamics. The
tensor order parameter formulation includes both effects

Berne ellipsoids. Advanced Monte Carlo methods are
required to overcome the free energy barriers that prevent
Nematic liquid crystals are characterized by the occur-
ence of disclination lines, topological defects where the
average molecular orientation changes abruptly [1]. Re-
cent experiments have shown that topological defects can
be exploited in biomolecular sensors [2]. The principle of
detection is simple: the presence of biomolecules in an
otherwise defect-free nematic perturbs the local ordering
of the liquid crystal, triggering the formation of topo-
logical defects. Nematics exhibit long-range orientational
order, and disclination lines may extend over long dis-
tances. The resulting optical signature can be detected
with a microscope and crossed polarizers. The amplifica-
tion factor for this form of detection is remarkable: ten
thousand fold, from the scale of a protein (10 nm) to the
size of macroscopic disclination lines (0.1 mm).

The design and optimization of liquid crystal based
biosensors requires a fundamental understanding of the
structure and dynamics of topological defects in the
presence of nanometer-scale particles. At the experimen-
tal level, Poulin and Weitz have analyzed some of the
structures formed when micrometer-sized particles are
suspended in a nematic solvent [3], while Lin and co-
workers have used optical tweezers to measure the effec-
tive interaction potential between two colloidal spheres
immersed in a suspension of fd-virus rods [4].

Molecular simulations provide a useful complement to
experiments, and have been used to explain the connec-
tion between the microscopic and mesoscopic scales. Gay-
Berne models, among others, have been useful in studies
that relate elastic properties to pair correlation functions
[5], analyze defect structures and anchoring orientations
around spherical and elongated particles [6], or investi-
gate the phase-ordering dynamics of LC systems [7].

At the mesoscale level, the theoretical description of
liquid crystals has been systematically improved from the
classical Leslie-Ericksen and Doi theories [8] to a dy-
namic field theory of the tensor order parameter [9,10].
Classical theories address either the long-range or short-
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and can easily incorporate viscous flow. It has been suc-
cessfully applied to the study of defect structures around
pairs of particles in bulk isotropic [11] and confined
nematic liquid crystals [12,13]. However, in contrast to
literature studies that have relied on a linearized form of
the governing equations (e.g., studies of long-range inter-
actions in two or three dimensions [11,14,15]), we solve
the full, nonlinear problem, thereby allowing us to also
explore short-range interactions and defect structures.

This Letter introduces a new defect structure that is
expected to arise around a pair of spherical particles;
it consists of three disclination rings, instead of the
usual two. It was identified by a dual-pronged approach,
combining dynamic field theory and Monte Carlo simu-
lations. To the authors’ knowledge, it has not been re-
ported before. We begin by providing the essentials of the
simulation and theoretical approaches. (For a complete
description of the methods readers are referred to previous
publications [13,16].) Next we present and discuss the new
defect structure in terms of the order parameter, the
director, and the size of the rings as a function of the
separation of the spheres. We compare our results to those
reported recently for a system of two spheres immersed in
the isotropic phase [11]. Finally, some suggestions are
offered regarding experiments to detect this new struc-
ture and our conclusions are presented.

We begin by considering a system of two spherical
particles of radius R suspended in a nematic liquid crys-
tal. Figure 1 illustrates the system with a snapshot from
one of our Monte Carlo simulations. The LC is confined
by horizontal walls separated by a distance Zwall, while
the centers of the spheres are confined to the plane z �
Zwall=2. The spheres’ and walls’ surfaces impose homeo-
tropic (i.e., perpendicular) anchoring conditions to the
liquid crystal molecules. The vector r12 joins the centers
of the spheres.

In the simulations, the LC molecules are represented by
a large number (tens of thousands) of soft repulsive Gay-
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FIG. 1 (color online). Two spheres dispersed in a liquid crys-
tal, with homeotropic (perpendicular) anchoring at the spheres’
surface and the confining walls. Periodic boundary conditions
are applied in the x and y directions. Colors (online only)
indicate orientations, from vertical (blue) to horizontal (red).
This snapshot from one of our simulations shows a layer of
molecules anchored at both spheres.
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appropriate sampling with ordinary schemes. Conven-
tional techniques (e.g., multicanonical ensembles, um-
brella sampling) are not easily applicable because they
require accurate initial guesses for the shape and position
of these barriers. However, an expanded ensemble–
density of states method (EXEDOS) has been recently
developed to estimate the barriers on the fly [16].With the
EXEDOS method, the LC configurations are sampled
uniformly for all separations r12, and the simulations
therefore provide reliable information about the interac-
tion energies and associated defect structures.

The orientational structures in the system can be ana-
lyzed in terms of the tensor order parameter Q [9]. This
tensor is the result of a coarse-graining procedure, from
detailed molecular information to a mesoscopic field that
depends on position and time. To define Q, consider a
small volume V around a given point r in the system, and
the molecules � � 1; :::; N that are present in it at time t.
The Gay-Berne molecules can be pictured as elongated
ellipsoids. The lengths of the long and short axes of the
molecules are �1 and �0, respectively. (In this work,
�1=�0 � 3.) The orientation of each ellipsoid is defined
by the unit vector u� in the direction of its long axis. The
Cartesian components of Q are given by [1]
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The scalar order parameter S (also denoted by P2) is
proportional to the largest eigenvalue �max of Q, S �
3�max=2, while the director n is the unit-length eigen-
vector associated with �max.

In the dynamic field theory considered here, the free
energy density is expressed in terms of Q and its deriva-
tives [17]. The short-range order contribution is repre-
sented by a Landau–de Gennes power series expansion,
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The long-range elasticity contribution is given in terms of
gradients of the components of Q; in the one-elastic
constant approximation this elastic free energy reduces to

F e �
Z L1

2
�@kQij��@kQij�dr: (3)

The total free energy of the system is F � F s �F e [18].
The coefficients A, U, and L1 in Eqs. (2) and (3) are

phenomenological parameters that depend on the liquid
crystal of interest. Nevertheless, they can be assigned a
microscopic interpretation [9]: the coefficient A corre-
sponds to NkBT=V, while U is proportional to
�1�

2
0N=V. Equation (2) describes the excluded volume

effects that drive the isotropic-nematic (I-N) phase tran-
sition. In this model, the I-N transition occurs at U � 2:7.
The coefficient L1 in Eq. (3) is a material-specific elastic
constant.

The evolution of Q is determined by the functional
derivative of the system’s free energy with respect to the
tensor order parameter [9,19]:
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Here, � � 6D�=�1� 3 tr�Q2�=2� and D� is the rotational
diffusivity coefficient for the molecules forming the LC.
We solve the evolution equation (4) numerically by a finite
difference method. The calculations are performed with a
set of parameters A,U, L1, andD� representative of a low-
molecular-weight liquid crystal (e.g., pentylcyanobi-
phenyl, 5CB) [1,20], which has been used in previous
theoretical studies [13,21]: A � 1, L1 � 0:55, D� � 0:35
[22]. For the isotropic and nematic phases, we used U � 1
and U � 4:8, respectively.The bare coherence length for
the fluid [13],  � �18L1=AU�

1=2, is  � 1:46R for the
isotropic phase and  � 0:67R for the nematic phase.

As an initial condition, we used a uniaxial field Qij �
S0�n0i n

0
j � �ij=3�, where S0 is the equilibrium value of S

in the bulk nematic. We started from either a totally
uniform or a totally random tensor field by choosing n0

as (i) a constant, given by the unit normal to the walls, or
(ii) a random vector on the unit sphere. The same defect
configurations were obtained in both cases.

If we examine the system at various separations be-
tween the spheres’ surfaces, s � r12 � 2R, we observe
that, consistent with previous reports [23], for large s
each particle is surrounded by a Saturn ring disclination
line. However, for s < R we observe a new structure (see
Fig. 2): two incomplete Saturn rings connected to a third
ring normal to r12.

In Fig. 3, we compare the structure of the three-ring
defect obtained from theory and simulation for s=R � 0:3
with R � 3�0. In both cases, the director field is shown
235507-2



FIG. 2. New three-ring disclination structure around two
spheres at a separation s=R � 0:3: (a) Contour plot S � 0:26;
(b) Size of the rings: a (radius of the Saturn rings), b (radius of
the third ring along the y axis), and c (radius of the third ring
along the z axis).
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superimposed on a contour plot of the scalar order pa-
rameter. Both theory and simulation display the third ring
in addition to the usual Saturn rings. In these plots we can
observe how the strength of the scalar order parameter
decreases continuously from its bulk value to a minimum
at the disclinations. In contrast to field theory, the Monte
Carlo results show layers of low and high values of S close
to the spheres’ surface. The origin of these S layers can
be traced to the layering of the LC molecules in the
vicinity of the spheres’ surface, as reported in a previous
publication for different systems [13].

The presence of the third disclination line can be
understood by the following argument. In the vicinity
of the outer hemispheres (those facing away from each
other) the bulk director is in conflict with the local
homeotropic anchoring, therefore a Saturn ring disclina-
tion is formed. In contrast, when the spheres are close to
each other, the local ordering can persist between the
inner hemispheres and one can see a ‘‘bridge’’ of director
field lines joining the spheres (see Fig. 3). At the micro-
scopic level, one can observe in Fig. 1 a layer of Gay-
Berne molecules bridging the inner hemispheres. The
third ring disclination line lies at the border of the bridg-
ing layer, where molecules abruptly align with the bulk
director instead of the line connecting the sphere centers.

In this system, the boundary conditions at the walls
single out the z direction, thus the symmetry between the
FIG. 3 (color online). Director and scalar order parameter maps o
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y and z directions is broken. This asymmetry allows for
the possibility that the third ring is not circular. To find
out if this is the case, three radii are introduced [see
Fig. 2(b)]: a, the radius of the Saturn rings; b, the radius
of the third ring along the y axis; and c, the radius of the
third ring along the z axis. Plotting the ratios a=R, b=R,
and c=R as functions of the separation s=R, as in Fig. 4,
we observe that a > b 	 c. We also observe that the
Saturn rings’ size remains constant as the third ring
shrinks monotonically when the spheres move away
from each other.

Galatola et al. have analyzed a related system using
field theory: two spheres immersed in the isotropic phase
at the onset of the isotropic-nematic transition [11]. They
predicted a single-ring structure, also in the plane normal
to r12. We have reproduced this structure with our field
theory and Monte Carlo simulations. In contrast to the
nematic system, however, the size of the single ring in the
isotropic phase increases with the spheres’separation; this
means that it is easier to expand the ring in the isotropic
case. A way to understand this is to consider the line
tension of the rings, i.e., their average free energy per
unit length. In the isotropic case, the ring lies at the border
of the region where S becomes uniformly zero. Therefore,
the ring’s free energy density contribution will be small,
and so will the line tension be.

What type of experiments would be able to detect
this novel structure? First, we must point out that this
structure is not expected to arise for large particles
in the bulk [3]. The reason is that for these large particles
Saturn rings are not stable. Instead, the stable structures
are hyperbolic point defects, also known as hedgehogs
[1]. For small particles of tens of micrometers in diame-
ter, however, Saturn rings can be stabilized by confine-
ment (note that this is a question that remains open)
[23,24]. In this case, it would not be advantageous to
look for the three-ring defects in randomly quenched
systems with many particles. In such systems the bulk
director n and the separation vector r12 would rarely be
orthogonal, and the separation between particles would
be difficult to control.

A promising alternative would be to use optical tweez-
ers to bring two particles close to each other in a liquid
btained from (a) field theory and (b) Monte Carlo simulations.
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FIG. 4. Ring radii obtained from field theory calculations
as a function of the sphere separation. The lines are guides to
the eye.
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crystal host confined between two plates [4]. An advan-
tage offered by this method is the control over the
spheres’ position and orientation with respect to a well-
defined bulk director. Operating the tweezers in a bire-
fringent material and minimizing the effect of the strong
electromagentic fields of the lasers on the structure of
the LC are challenges to overcome. A different method,
based on the magnetic manipulation of spherical droplets
filled with ferrofluid, could also be useful to prepare the
required particle configurations and even measuring at-
tractive forces between them [25].

In conclusion, this Letter shows the need to account for
the reorganization of defects in situations where linear
superposition approximations do not apply. Using mo-
lecular simulations and a full tensor formalism, we have
uncovered a new defect structure around a pair of nano-
scopic particles immersed in a nematic liquid crystal: two
incomplete Saturn rings and a third ring, normal to the
line connecting the centers of mass of the spheres. The
third ring shrinks monotonically as the interparticle
distance increases, until it vanishes. The dynamic field
theory is able to reproduce the results of simulations down
to scales comparable to the molecular length, thereby
indicating that the theory is capable of describing both
mesoscale and molecular-level phenomena.
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