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Force-Extension Curve of a Polymer in a High-Frequency Electric Field
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We study theoretically the conformation and force-extension curve of a semiflexible polymer in a
spatially uniform ac electric field. The polymer backbone minimizes its energy by aligning along one of
two orientations parallel to the field. In a strong ac field, hairpin kinks develop between regions of
opposite alignment. These kinks are mathematically described as sine-Gordon solitons. We calculate the
equation of state of the one-dimensional kink gas, which yields the force-extension curve of the
polymer. A sufficiently strong ac field causes the polymer to extend spontaneously to almost its full
contour length. The theory is applied to recent experiments on dielectrophoretic stretching of DNA.

DOI: 10.1103/PhysRevLett.91.235506

There is increasing interest in using high-frequency
electric fields to manipulate polymer molecules, espe-
cially DNA, in solution [1-7]. A field interacts with the
molecular polarizability to generate forces, torques,
and internal stresses, a phenomenon known as dielectro-
phoresis (DEP) [8]. DEP-induced stresses may lead to
functionally significant conformational changes in bio-
molecules. For instance, 16-um-long A-DNA, tethered by
one end to an electrode, extends to its full contour length
away from the electrode when an ac voltage is applied
[6]. This stretching is counterintuitive because the elec-
trode generates a field gradient which seeks to pull the
DNA towards the electrode. In this Letter we develop a
model for the conformation of a polymer strand in an ac
field. The model explains the stretching phenomenon and
suggests other experiments related to DEP manipulation
of macromolecules. A recent study by Netz [9] examined
short polymer strands in dc fields. We find qualitatively
different behavior for long strands in ac fields.

The model consists of a polyelectrolyte strand of
length L, subject to a spatially uniform ac field of rms
amplitude E, and a tension F, applied to the ends of the
strand and parallel to the field. The tension could occur in
a single-molecule pulling experiment or serve as a proxy
for more complex body forces induced by fluid flow or
inhomogeneities in the field.

When dielectrophoresis is performed in water, ac fields
are used rather than dc fields, to avoid ionic screening,
electrochemistry, and electrophoresis. Typical ac fields in
DEP have frequencies of 100 KHz—5 MHz. Polarization
of polyelectrolytes such as DNA is largely due to motion
of counterions, some condensed on the molecule, and
some surrounding it in a diffuse cloud. This polarizability
is highly anisotropic, being greatest parallel to the mo-
lecular backbone. The theory of polarization of polyelec-
trolytes is reviewed in [10,11].

For long molecules in high-frequency fields, the local
polarization depends only on the local field. This is not
the case for short molecules or for low-frequency fields,
where the field can induce a global reorganization of the
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counterions. If the frequency of the field is », in a half-
period an ion diffuses a distance 6, = +/D/v, where D is
the diffusion constant. The ion also oscillates with an
amplitude 8, = wE/27v, where u is the mobility (with
the ionic charge included in its definition). For a Na* ion
in water (D = 1.3 X107 m?/s, u =5X 1078 m?/Vs),
under typical conditions for stretching DNA (E =
1 MV/m, v = 1 MHz), we find 6, = 36 nm and 8, =
8 nm. The induced polarization in any bit of the polymer
can depend only on the field averaged over a ball whose
radius is of order 0p. DEP stretching is typically studied
in DNA strands many microns long, so it is justified to
assign the molecule a polarizability per unit length, .

Assuming negligible transverse polarizability, the in-
duced linear polarization density at position s is dp(s) =
a(E - u)du, where u(s) is the unit-vector locally tangent
to the polymer. The polarization interacts with the field to
give a time-averaged electrostatic free energy per unit
length,

U,(s) = —Vcos?6(s), (1)

where V = 1 E?a and 6(s) is the angle between the poly-
mer backbone and the field. This energy seeks to align the
polymer backbone with the closer of two orientations
along the field axis.

Nematic polymer liquid crystals have a similar cos?#
term in their Hamiltonian, arising from a Maier-Saupe
mean field interaction between the polymer and its neigh-
bors [12]. In analogy to the case of polymer liquid crys-
tals, we call U, the nematic energy. Below we examine
the conformation of a polymer in an ac field, first in the
limit of weak field and weak tension, then in the limit of
strong field and weak tension, and finally in the limit of
either very strong field or very strong tension. The mean-
ings of these limits will be explained.

For weak tension and weak ac field, it is acceptable to
model the polymer as a freely jointed chain (FIC) of N
rigid sticks, each of length b, and each assuming an
orientation independent of its neighbors. For consistency

© 2003 The American Physical Society 235506-1



VOLUME 91, NUMBER 23

PHYSICAL REVIEW LETTERS

week ending
5 DECEMBER 2003

with the more realistic wormlike chain (WLC) model, the
stick length should be b = 21, where [, is the persistence
length of the WLC.

The orientation-dependent energy of each stick due to
tension, F, and a parallel ac field, is Ugjc = —Fb cosf —
Vbcos?6. The ac field biases the sticks to point towards
either pole, and tension favors one pole over the other.
The partition function of a single stick is

77 Fbcosf + Vbcos?d
Zryje = / sinf exp( cos cos >d9. 2)
0 kBT

The integral in Eq. (2) may be evaluated explicitly in
terms of error functions, and from the resulting expres-
sion any thermodynamic property of the FJC determined.
For example, each stick has a mean end-to-end extension
of (x;) = kgTdr(InZpc). Since the sticks are indepen-
dent, the total extension is (x) = N{x;). The zero-
extension spring constant of the FJC is then given by
k= (3 p()p=) "

A weak ac field softens the zero-extension spring con-
stant by favoring steps with a larger displacement along
the field axis. In the absence of a field, the spring constant
of a FIC is kg = 3kgT/Lb. Expanding the expression for
k in the ac field strength yields

_3kgT 4V
Lb 5L

The softer spring constant also implies a larger radius of

gyration, R% = (kkgT)~!, along the field axis. We find

_NB* 4NV
3 45kgT

k
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Thus a weak ac field turns a roughly spherical random
coil into a prolate spheroid aligned along the field. How-
ever, no field strength will lead to spontaneous extension
of the FIC; rather in the strong-field limit the FJC under-
goes a one-dimensional random walk parallel to the field.

The FJC model breaks down in an intense ac field
because it ignores the large bending energy that arises
when a stick and its neighbor point towards opposite
poles. An ac field is strong when its dimensionless mag-
nitude is Vb/kgT > 1/2. As this quantity surpasses 1/2,
the distribution of stick orientations switches from
unimodal to bimodal. The curvature in the vicinity of
an orientation reversal becomes comparable to the ther-
mally induced curvature, and thus the bending energy is
no longer negligible.

To include the bending energy it is necessary to adopt a
continuum description. The effective energy in the ab-
sence of tension is

U fL<1K
o \2

In this coarse-grained description, the first term arises
from the bending energy, where K [J m] is the bending

du

ds

2
- Vcos20>ds. 3)
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constant, and the second term is the nematic energy where
V [J/m] is the effect of the ac field.

DeGennes studied contours, u(s), that minimize
Eq. (5), in application to nematic polymer liquid crystals
[12]. He showed that hairpin kinks are described by the
sine-Gordon soliton:

Op(s) = 2cot™" exp(—s/sp), (6)

where s, = \/K/2V is the characteristic size of bends in
the polymer. Figure 1 shows the shape of a hairpin and a
typical conformation of a polymer with ten hairpins. The
lateral displacement (see Fig. 1) across a kink is [ = rs,,.
The total energy stored in a kink is given by substituting
Onp(s) from Eq. (6) into Eq. (5) to yield

Uy = 2V2KV = 2kBTi—”, (7)
0
where 1, = K/kgT.

Kinks have well-defined size and energy, so we think of
them as particles. In addition to the kink of Fig. 1(a), there
exists an antikink formed by reflecting Fig. 1(a) about the
vertical. Clearly kinks and antikinks must alternate along
the polymer. At finite temperature, thermal fluctuations
nucleate kink-antikink pairs. Each kink diffuses along
the polymer until it encounters an antikink, whereupon
the two annihilate.

Now we study the thermodynamics of the kink gas. On
a chain with free ends, the equilibrium number of kinks
should have the form nd, = (L/I")eV«/*T. The as-yet-
unknown quantity [* represents the length separating
independent attempts by the polymer to reorient. Warner
and co-workers calculated [* by drawing an analogy
between direction-reversals of the polymer and quantum
mechanical tunneling of a rigid rotator in a quadrupolar
field [13—15]. They found [* = kgT/16V. This result can
also be derived more intuitively from soliton theory [16].
It is noteworthy that the attempt-length, I*, is indepen-
dent of the polymer stiffness, K, although by assumption

ST
R|=

o=

FIG. 1. (a) Shape of a hairpin kink in a polymer strand
subject to a strong ac field. (b) Conformation of a polymer
containing ten kinks of random position and orientation. All
kinks are the same size: those that appear thinner are viewed
edge on.
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of a strong nematic field we have [* < [,,. The equilib-
rium number of kinks is

LV U
0, = 16" (——" ) 8
leq g TP\ kT ®)

To calculate the force-extension curve in the kink-gas
regime we map the problem onto the 1D Ising model.
Approximating the polymer as perfectly straight between
kinks, the unit-tangent vector takes on only two values,
mapped to “spin up” and “spin down.” The number of
independent “spins” on the polymer is N = L/I*. The
coupling to the tension, [*F, corresponds to the coupling
to the magnetic field, uB. The energy of a kink, Uy,
corresponds to the energy of an orientation reversal, 2J,
where J is the nearest-neighbor coupling in the Ising
model.

Making the above substitutions into the well-known
solution of the 1D Ising model [17] and taking the limit
U, > kgT, we find that the equilibrium number of kinks
is related to the end-to-end extension, x,, by

0 x(z)
Neq = Neqy|1 — 5 9

the free energy, A, is directly proportional to the equilib-
rium number of kinks,

A = —kgTng, (10)
and the force-extension relation is
kgTn% \27-1/2
x0=L|:1+<B eq” . (an
FL

The zero-extension spring constant derived from Eq. (11),
k= kBTngq/Lz, is much smaller than that of the FJC
[Eq. (3)], because the field exponentially suppresses ngq
[Eg. (8)]. The suppression arises from the energetic cost of
orientation reversals, which was neglected in the FIC
model. Equation (11) implies that in the kink-gas regime
the polymer is very easily extended to almost its full
contour length.

The Ising model does not take into account small
fluctuations along the sections of the polymer between
kinks. To calculate the effect of these fluctuations we
introduce the tension, F, explicitly into the effective
energy of Eq. (5):

U fL<1K
o \2

Far from a kink, 6 is close to 0 or 7, depending on
whether the polymer is aligned or antialigned with the
tension. The contour lengths of the aligned sections, L™,
and the antialigned sections, L™, are obtained from
Eq. (11) via L™ = (L * x;)/2. Expanding Eq. (12) about
68 = OonL+ and about § = 7 on L™, the energies of these
two segments become:

du |2

ds

—Fcosf — Vc0520>ds. (12)
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du

2
o +F;—}f02>ds, (13)

L (x
21}

where the effective tension, F_; =2V = F, arises be-
cause the energies due to the tension and the ac field are
both quadratic in 8. On L*, the ac field and tension both
act to extend the polymer, while on L™, the ac field acts to
extend the polymer and the tension acts to compress the
polymer.

The energy of Eq. (13) is identical to that of a WLC
under tension in the absence of a field, with the replace-
ment of Fey for F. Thus we can quote the well-known
force-extension relation of a WLC under large extension

[18] to get
knT
= Lr<1 | AT ) (14)
4lpFe?f

where x* and x~ are the actual end-to-end lengths of the
sections of the polymer aligned, and antialigned with the
tension, respectively. The net end-to-end extension is
given by x = x* — x~, which is less than the extension
predicted by the pure Ising model. Even when the tension
is sufficient to completely eliminate kinks, so that
LY =L and L~ = 0, Eq. (14) shows that small thermal
fluctuations prevent complete extension of the polymer.
Figure 2 illustrates the force-extension curve of a WLC in
the presence and absence of a nematic field. The initial
steep rise in the extension is due to the kink gas. After the
kinks have been suppressed, the extension grows much
more gradually as the tension suppresses small thermal
ripples.

For a polymer of finite length, a sufficiently strong field
may send ngq < 1. A polymer with no kinks will show
spontaneous extension to a length given by Eq. (14). The

0 1 FlJksT 2 3

FIG. 2. Force-extension curve of a polymer in a strong ac
field (bold). The Marko-Siggia interpolation formula for ex-
tension of a wormlike chain (without an ac field) is plotted for
comparison. Under sufficiently strong tension, both curves
reach x/L = 1. The dimensionless nematic field strength is
V1,/kgT = 6.
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effective tension, F, is positive even if F = 0. Tension
(F > 0) further penalizes fluctuations in orientation and
leads to additional extension. Under compression (¥ << 0),
the polymer may lower its energy by an amount 2FL if
it reverses direction. This reversal can occur through
nucleation of a kink and antikink which are driven apart
by the compressive force. For weak compression, the time
scale for spontaneous formation of a critical kink-
antikink nucleus is 7 « exp(—U,/kgT) [19].

We expect qualitatively similar features (i.e., drastic
reduction of the restoring force, followed by spontaneous
extension) to arise in polymers confined to a capillary of
width comparable to the persistence length. In a polymer
in a capillary, adjacent sections of the polymer may point
in opposite directions, joined by an energetically costly
hairpin kink. These are the conditions for description
by the Ising model. The microscopic structure of a kink
enters only in its free energy, which determines ngq.
Under sufficiently strong confinement, thermally acti-
vated kinks become suppressed and we expect the poly-
mer to show spontaneous extension. Such situations
may arise with the advent of nanofluidic devices for pro-
cessing DNA.

In experiments on dielectrophoretic manipulation of
DNA, the electrode geometry typically creates an inho-
mogeneous field which attracts the DNA to regions of
high intensity near the electrode corners. As the DNA
moves towards the electrode, it also straightens and ex-
tends to its full contour length into the solution. If the
DNA experienced simple attraction, it would ball up on
the surface. In the model presented here, the molecule
straightens because the field is strong enough to suppress
the formation of kinks. Without the inclusion of the
bending energy (i.e., in the FJC model), the polymer
does not spontaneously extend in any ac field strength.
Experiments are underway to provide a quantitative test
of this theory. Single-molecule force-extension curves
measured in an ac field should provide a quantitative
test of the predictions in the various regimes, given by
Egs. (3), (11), and (14).

In conclusion, we have studied the restoring force and
conformation of a polymer across the entire range of
tensions and ac field strengths. In zero ac field the poly-
mer is well-approximated by a freely jointed chain (FJC).
A weak field biases the steps of the FIC to lie along the
field axis. This bias decreases the entropic spring constant
and increases the radius of gyration parallel to the field. A
stronger ac field aligns almost all of the polymer back-
bone with the field. Freely diffusing hairpin kinks con-
nect regions of opposite alignment, and the restoring
force is exponentially suppressed by the ac field. A suffi-
ciently strong field drives the density of kinks to less than
one per polymer length, so the polymer approximately
maintains its initial orientation along its entire length.
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The activity of many DNA-active enzymes depends on
the conformation of the underlying strand. Through its
effect on conformation, an intense ac field may provide a
way to rapidly and reversibly modulate both the kinetics
and thermodynamics of biochemical processes, supple-
menting the traditional tools of temperature and chemical
environment. Furthermore, it may be possible to design
nanoscale polymeric actuators in which an ac field drives
a conformational change.
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