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Phase Control of Collective Quantum Dynamics
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The manipulation of the steady-state behavior of a collection of dipole-interacting three-level atoms
in a V or A configuration is investigated as a function of the relative phase of two strong coherent
driving fields. For larger samples, the phase is shown to be a convenient parameter to rapidly populate or
depopulate completely a trapping state of the ensemble. As applications, we present the appropriately
prepared atomic sample as an optical switching device and show its virtues in controlling the collective

steady-state resonance fluorescence intensity.
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Ever since the classic work by Dicke [1], the concept of
collectivity for dipole-interacting atoms confined in a
region of the order of a typical optical wavelength has
received considerable attention [2—12]. Dicke showed that
such a sample of N excited atoms forms a collective
dipole moment, which leads to effects such as a fluores-
cence intensity proportional to N* and a quantum dynam-
ics N times faster than for a single atom. These effects
have been verified experimentally [8]. Controlled by co-
herent sources of light, collections of atomic few-level
systems may exhibit interesting steady-state character-
istics like jumps and discontinuous behaviors [9-11]. A
recent extension to coherent controlling schemes used in
quantum optics is based on the relative phase between
driving laser fields [13—17]. This typically involves quan-
tum interference between multiple atomic transitions
pathways which is known to be a source for many inter-
esting applications [18]. In [13], the phase dependence of
the resonance fluorescence spectrum in a single three-
level A-type atom was investigated. Spectral narrowing
and fluorescence quenching in an atomic four-level sys-
tem was reported in [14]. Also light amplification without
inversion may be controlled by the relative phase [15].
The phase control was also shown to be useful in ma-
nipulating the single-atom spontaneous emission in dif-
ferent surroundings as in photonic crystals [16].

In this Letter, we put forward a coherent phase-control
scheme for a collection of atoms. To this end, we inves-
tigate the dependence of the steady-state properties of a
sample of atomic three-level systems on the relative phase
between the two applied strong driving laser fields.
Because of the general approach, our analysis applies
both to atoms in V and in A configurations as shown in
Fig. 1. By appropriately choosing the relative phase, all
atoms may be trapped in the upper atomic state doublet of
the three-level systems in the V configuration, and in the
lower doublet for the A system. In these trapping states,
the total collective fluorescence light is completely sup-
pressed. For different values of the relative phase, these
doublet states may also be partially depleted. Increasing
the number of atoms involved leads to a more rapid trans-
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fer of the atoms into the trapping states or vice versa. This
property may be used to build fast optical switching
devices conveniently controlled by the relative phase of
the two laser fields. As an additional weak probe beam
would experience absorption or gain depending on the
steady state of the collection of atoms, this fast switching
between the ground and the excited states might be used
to construct a quantum optical transistor.

To allow for a description of the system using collective
operators, we assume the atomic sample to be confined in
a region which is small as compared to the wavelengths A
of the atomic transitions. Collisions among the radiators
are avoided by considering moderate atomic densities d,
such that dA* = 1. The dipole-allowed transitions be-
tween the states [2) < [1) and [3) < [1) are driven at
resonance with Rabi frequencies 2(), and 2{); by two
strong coherent fields with phases ¢, and ¢3, respectively.
In the V system, the degenerate upper states |2) and |3)
decay to the ground state with decay rates 2y, and 2vs3,
while two incoherent fields 2r,, and 2r, are used to
transfer population from the ground state to both upper
states. In the A system, the upper state |1) decays to
the degenerate ground states |2) and |3) with rates 27y,
and 273 and is repumped by two incoherent fields 2r),
and 2r, .

In order to allow for a dependence of the system on the
relative phase of the driving fields, spontaneously gener-
ated coherence (SGC) or cross-coupling terms are in-
cluded in the analysis. These terms may be interpreted
as arising from virtual collective emissions of photons on
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FIG. 1. Bare-state notation of the three-level systems.
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one of the transitions followed by a virtual collective
absorption of the same photons on the other transition.
The notation virtual here refers to the fact that photons
involved in these processes cannot be detected. In free
space, this effect is strongly dependent on the mutual
orientation of the dipole moments d21 and d31 of the
two _transitions. It is absent for d21 J.d;l and is maximal
for dy ||ds, . It should be noted that the condition d,, ||ds;
is rarely met in atomic systems. In order to overcome this
difficulty, the atoms may be thought of as interacting with
the modified vacuum of a preselected cavity mode in the
bad cavity limit. As shown in [19], by proper engineering
of the cavity, one may obtain SGC even for initially
orthogonal dipole moments. However, our analysis does
not depend explicitly on the cavity, such that different
schemes which provide nonzero values for SGC may be
equally applied. In the usual Born-Marcov, mean-field,
dipole, and rotating-wave approximations, for the V sys-
tem we obtain the following first order differential equa-
tion for the density operator p:

p == Z (i[QaSalei¢a’ P] + Fa[Sal’ Slotp]
aEe{2,3}

OHﬁBZ‘E{ZB}
Here I', = g2/(k — iA,), g, is the coupling between the
cavity mode and the atomic transition |a) « |1) (a €
{2, 3}), 2k the rate at which the cavity is losing photons,
A. = 0w, — w, the cavity detuning, w,. the cavity mode
frequency, and w, = w,; = w3 indicate the atomic
transition frequencies. I'yz = 1,/I',1'5 is the SGC con-
tribution with 7 as a control parameter which is unity for
maximal SGC contributions and zero if these cross-cou-
pling terms are absent. We define the collective state
lay :== 3" |a); (a in {1,2,3}) as the sum over the cor-
responding single atom states indicated by the subindex i.
Accordingly, S, = la)XB| =YX, |a); (Bl are collec-
tive atomic operators given by sums over single atom
operators |a); {B| and obey the commutation relation
[Saﬁr Sﬂ'a’] = 8,BB’Saa’ - 60101’S/3’B for {CY, alr :8’ Bl} €
{1,2,3} as well as the condition S;; + Sy + S33 = N
where N is the number of atoms in the sample. In
Eq. (1), the first term describes the coupling to the coher-
ent fields. The term proportional to the real part y, =
Re(l',) of ', (a € {2, 3}) is due to collective spontaneous
emissions in the cavity mode, while the imaginary part is
associated with the frequency shift of the atomic levels
resulting from the interaction with the vacuum field in the
detuned cavity. The incoherent pumping of the excited
levels is described by the term proportional to r, . The
last term of Eq. (1) accounts for the SGC contributions.
The corresponding master equation describing a sample
of A-type atomic systems may be obtained from Eq. (1)
by swapping the two indices of each transition operator
having a or B as one of the indices, e.g., S, < Siq-

+ rpa[Slw Salp])
LoplSar, Sigp] + He. (1
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The parameter 7 also allows one to account for pos-
sible external perturbations such as collisions, because
these will reduce the SGC contribution. However, as was
already shown for particular decoherence sources in col-
lective systems [20], moderate disturbances may be com-
pensated by increasing the number of atoms. In
particular, while 7 need to be above zero, it may be less
than unity in our scheme.

In the strong-field limit (), > Ny,, Nr, (a € {2,3})
of interest here, we transfer into the dressed state picture

)= E ) - 23,
-2 Enl o
) =i = 2 -2}

Gl

where (0 = ,/Q3 + Q2, and we employed also S, =
Sae'% [S), = S1,€'%] in using Eq. (1) for V- [A-]Jtype
atoms and dropped the tilde afterwards. Taking advantage
of Egs. (2) in Eq. (1) and neglecting terms that oscillate
with frequencies () and larger in a secular approxima-
tion, one may obtain the following exact steady-state
solution (subindex s) of the dressed master equation for
both the V- and the A-type systems:

N r
p,=27"" ZX(/(A) z |r, m)(m, r|. 3)
r=0 m=0

Here |r, m) are eigenstates of the operators R = R,, +
R33, R33, and Ry + Ry, + R33 with eigenvalues r, m, and
N, respectively. R,, = |V X¥,| (¢ €{1,2,3}) is a col-
lective dressed state population operator and Z a normal-
ization constant. The coefficients Xy, represent the ratio
of dressed decay and pumping rates:

v =L[yva + 73(Q2/Q3)* = 20(Q2/Q3)/72 73
X cos(Ap)]/[r,, + r,,(Q,/03)*] 4

for the V system and X, = X;,! for the A scheme.
The dressed steady-state atomic population then yields

R, — NXNT2 — (N +2)XV T+ N(X — 1) +2X
s (X = DIV + DXNT2 = (N + 2)XM T+ 1]
and <R33>x = <R22>x = <R>s/2 with <R>s =N-— <R11>s'

Here we have dropped the index of X because all dis-
cussed populations depend identically on the respective
Xy and X, parameters for both systems. The steady-state
atomic population in the collective bare state |1) is given
by the relation {(S;;), = (N — (R;1),)/2.

For simplicity, we restrict the following analysis to the
parameter range (), = O3, v, = y3 =y, 1), + 1), =
2r,. The parameter X may then be written as Xy =
C{1 — ncosAg} [X, = X;;'], where C = vyy/r, is the
ratio of spontaneous decay and incoherent repumping in
the atomic systems and along with Xy, [X, ] will turn out
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to crucially influence the system behavior. First we inves-
tigate the case C = 2; i.e., the decay dominates over the
repumping. Figure 2(a) shows the steady-state population
in the collective dressed state | W) per atom for different
numbers of atoms N versus the relative phase between the
two applied strong resonant laser fields for the V-type
system. Figure 3(a) displays the corresponding results for
the A system. For a single V-type atom (N = 1), the atom
may be trapped only in |¥,) for A¢p =n X27w (n €
{0, 1, ...}), while for a single A-type atom the trapping is
not possible with incoherent pumping. However, for a
collection of atoms (N >> 1), trapping is possible both
for the V and the A systems. With an increasing number of
atoms, the range 8(A ¢), for which the collective coherent
population trapping effect occurs, grows until in the limit
N — oo the system exhibits jumps between two states
with either all or none of the population in the collective
state |¥,).

This behavior of the steady-state population of the
dressed state | W) may be simplified by taking the limit
N — oo of its population per atom {(R;;),/N, which for
0=X<1isl,forX =11is1/3,and for X > 11is 0. Thus
the jumps occur at X = 1 or at cosA¢ = (1 —1/C)/n.
The trapping range is given by §(A¢), = 2arccos[(1 —
1/C)/n] for the V system and by 8(A¢), = 2(7 —
arccos[(1 — 1/C)/n]) for the A system. The discontinu-
ities may be interpreted in terms of phase transitions [11]
and are due to the fact that the sample of atoms forms a
collective dipole moment which evolves on a time scale N
times faster than the single-atom dipole moment with
corresponding changes of the collective dressed steady-
state populations [1]. They occur for the V[A] system at
the points where the dressed spontaneous decay out of
[into] state |¥,) just equal the dressed pumping in the
reverse direction.

(R11)/N

IV/NZ
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o N oy 0 OO N oy 0 O

FIG. 2. The dependence of (a),(b) the steady-state population
of the collective dressed state |¥;) and (c),(d) of the total
collective steady-state fluorescence intensity as a function of
the relative phase A¢p := ¢, — ¢ for the V system. The dash-
dotted, dashed, and solid curves correspond to N = 1, N = 10,
and N = 200, respectively. Further Q, = Q3,7 =1, ®(r) = 1
and (a),(c) C =2, (b),(d) C = 0.5.
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For C = 0.5, i.e., dominating repumping, the results
shown in Figs. 2(b) and 3(b) may be interpreted along the
same lines. However, the condition Xy = 1 [X, = 1] is
always fulfilled. Therefore the collective dressed state
|W,) is never entirely depleted in the V system and never
fully populated in the A case, and no discontinuities are
observed. The reason for this is that the repumping of the
upper bare states is always strong enough to prevent the
population from entirely leaving it.

For the time-dependent dressed population we obtain
R0y =[a— bt Roe lymla=b)It] /1 — T Ro ~lym(a=b)lr]
for N> 1,X # 1 w1th initial cond1t10n I% = (R;,(0))
and y,, = yo(1 — cosA¢)(1 — X;;!). If X > 1, then a —
0 and b — N, while for X <1, a — N and b — 0. Thus,
due to collective effects, the time required to evolve into
steady state for X # 1 is proportional to N~!'. For a
pencil-shaped sample with length 1072 cm, transversal
area 107 cm?, A = 1074 cm, Q ~ 10'! Hz, vy, ~ MHz,
d ~ 10" cm™3, and phase switching between A¢ =0
and 7/2, switching times of about 107 s are feasible,
including elastic collisions.

To further discuss the system behavior, we now
turn to the total steady-state intensity / of the collective
fluorescence light on both transitions [2) < |1)
and [3) < |1) which may be evaluated as [ =
lim,_ oo (E) (7 ) E)(7 1)), where EC)(7 ¢) and ET)(7 1)
represent the positive and negative frequency parts of the
amplitude of the electromagnetic field operator E(7, r) and
7 is the detector position. In the far-zone limit r = |F| >
A one can express the entire intensity via the collective
atomic operators as

Iy =D (r){(S3;513) +(S21S12) + n((S21 S13)e A¢ + H.c.)}

for a V-type atomic sample. For a A system the expression
for the intensity /, is again obtained by a permutation of
the indices in the above expression, e.g., S5, « S;5. ®(r)
is a geometrical factor which we set equal to unity in
the following. Employing Eq. (2) and the steady-
state solutions Eq. (3) one may obtain the following
expression for the collective steady-state intensities

(Rn)/N

Ip / N?

o O 0O 0 O FO O O O O =
S N b oYy O OO0 N s oy 0 O
v

FIG. 3. The same as in Fig. 2 but for the A system.
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[Q% = Q? 270,05 cos(A¢)]:
o e s
QZ

2
I = STV 4 (R, = (R, + 15 (R ),

Iy

Here, (R, ), = 2/3[(R?); + 2(R),], and

N
(R, =2Z7' Y rP(r+ X"
r=0

Figures 2(c) and 2(d) depict the collective steady-state
fluorescence intensity per emitted atom I,/N? for a V
system with minima A¢ = 7n for n €{0,1,2,...}. A
comparison with Figs. 2(a) and 2(b) shows that the min-
ima occurring for even n are due to the trapping of the
population in the collective dressed state |¥,), ie., in
the collective upper bare states |2) and |3). In Fig. 2(c), at
phase differences corresponding to odd n, the fluorescent
intensity also tends to zero for N > 1. However, at these
phase differences the population is not trapped in | V) as
for even n, but with equal weights in the two other dressed
states. This means that 0.5 of the atomic population is in
the ground bare state |1), while 0.25 of the population is in
each of the upper bare states |2) and |3). As the inhibition
of fluorescence does not occur in the single-atom case,
these minima may be associated with subradiant states:
The photons emitted by the half of atoms in the excited
states are absorbed by the other half in the ground state.
For smaller values of C [see Fig. 2(d)], the dark states at
odd n do not occur, and even the local minima at the
corresponding phase differences eventually disappear
with sufficiently intense repumping for C < 0.5. Here,
the radiation intensity scales linearly with N, similar to
an ensemble of independent radiation emitters.

In the A system with decay dominating over repump-
ing, the fluorescence may be suppressed for A¢ =
7(2n + 1) with n €40, 1,2,...} as shown in Fig. 3(c)
for N > 1. As for even n in the V system, this inhibition
is due to the trapping of the population in the collective
dressed state |W,), though here only for large N. For
A¢ = 2n, the collective steady-state intensity is maxi-
mal and proportional to the squared number of atoms N>
[/, = N(2 + N)/3]. In this situation, 0.5 of the popula-
tion is in the upper bare state |1), and 0.25 in each ground
bare state |2) and |3). This indicates further the existence
of a superradiant state. For larger pumping [see Fig. 3(d)
with C = 0.5], there is again no trapping and the maxima
at A¢p = w(2n + 1) eventually vanish because the inten-
sity is proportional to N for C < 0.5. Here, for even n, the
N dependence is quadratic while it is linear for odd n.

We note that the discussed phase control depends cru-
cially on the presence of incoherent pumping as a counter-
part to the phase-dependent dressed decay rates. Thus,
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without incoherent pumping the corresponding radiation
intensities I, = Q2%[2 + NIN/(6Q?) with (S;,); = N/2,
(S)s = NQ3/(V2Q)* and I, =0 with (S;;), =0,
(S2), = N(Q3/Q)? (we excluded the special initial-
condition-dependent case Q, = Qj, v, = y3, A¢p =
27rn) do depend on A¢ for the V system though without
phase control of the dressed populations. At best there is
the well-known decay-independent coherent population
transfer mechanism between states [2) and |3) via adapt-
ing the intensities of the driving fields appropriately.

In conclusion, the interplay of decay and pumping
processes in three-level atoms was shown to allow for
rapid coherent phase control of collective population dy-
namics along with the feasibility of transferring those
states at will into subradiant or superradiant ensembles.
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