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Gödel’s Universe in a Supertube Shroud
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We demonstrate that certain supersymmetric Gödel-like universe solutions of supergravity are not
solutions of string theory. This is achieved by realizing that supertubes are Bogomol’nyi-Prasad-
Sommerfeld states in these spaces, and under certain conditions, when wrapping closed timelike curves,
some world-volume modes develop negative kinetic terms. Since these universes are homogeneous, this
instability takes place everywhere in space-time. We also construct a family of supergravity solutions
which locally look like the Gödel universe inside a domain wall made out of supertubes, but have very
different asymptotic structure. One can adjust the volume inside the domain wall so there will be no
closed timelike curves, and then those spaces seem like perfectly good string backgrounds.
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tended branes in this vacuum and to analyze the dynamics
of small fluctuations around them. For a specific subset of

equations of supergravity, we will demonstrate that, as it
stands, it cannot be a valid solution of string theory. One
Introduction.—Einstein’s equations in general relativ-
ity have many solutions that seem unphysical. Some have
curvature singularities, which generically lie beyond the
regime of validity of the classical theory. Other solutions
may have no singularities, but violate causality, by having
closed timelike curves. Hawking [1] has presented argu-
ments to support the chronology protection conjecture,
namely that, when quantum mechanics is taken into
account, backgrounds not having closed timelike curves
do not develop them. Even if this is true, it seems to leave
open the question of whether backgrounds having closed
timelike curves to begin with have to be discarded or not.

The answer to such questions may not be found entirely
within classical general relativity. One would like to
know that the energy momentum tensor, serving as the
source in Einstein’s equations, corresponds to reasonable
physical matter. Another direction to address the problem
is to ask whether there is a way to make sense of physics
on spaces with closed timelike curves in classical me-
chanics, quantum mechanics, or quantum field theory.

Probably best of all is to ask those questions in string
theory, which encompasses both general relativity and
quantum physics. Just as string theory has managed to
resolve certain curvature singularities, mainly timelike,
by the addition of extra degrees of freedom, it is natural to
wonder about the status of closed timelike curves in such
a quantum theory of gravity. Are such backgrounds al-
lowed in string theory? Does string theory realize the
chronology protection conjecture? Some recent work in
this direction is described in Refs. [2–7].

In string theory, the existence of dynamical extended
objects provides us with probes suited particularly well to
study nonlocal issues like closed timelike curves. Instead
of trying to quantize the string world-sheet theory in one
of these backgrounds, finding its spectrum and adding
interactions, our strategy will be to look for Bogomol’nyi-
Prasad-Sommerfeld (BPS) states corresponding to ex-
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backgrounds having closed timelike curves we will find
BPS states with a sickness in their effective action, sig-
naling the invalidity of the solution.

Let us be more precise. There are many supergravity
backgrounds having closed timelike curves. We will be
interested in Gödel-like universes, which were first em-
bedded in five-dimensional supergravity [8]. Some other
examples of similar metrics were found in [2,9]. All these
solutions are generalizations of a four-dimensional met-
ric studied by Som and Raychaudhuri [10], and are very
similar to the original Gödel universe [11].

All these solutions describe rotating spaces, where one
can choose the planes of rotation as well as some fluxes
that make the solution supersymmetric. We will concen-
trate on a specific solution of type IIA supergravity with
rotation in a single plane, since this is the simplest ex-
ample of such a metric with closed timelike curves.

This solution [9] has a nontrivial metric in three di-
mensions, which we parametrize by the time coordinate t,
and polar coordinates r and � in the plane. There is a
Neveu-Schwarz–Neveu-Schwarz (NS-NS) flux as well as
Ramond-Ramond (RR) two-form and four-form fluxes,
and we label the extra direction in which there is flux by y.
The metric and fluxes are

ds2 ���dt� cr2d��2 � dr2 � r2d�2 � dy2 �
X9
i�4

�dxi�2;

H3 ��2crdr ^ d� ^ dy; F2 � �2crdr ^ d�;

F4 � 2crdt ^ dr ^ d� ^ dy: (1)

This one parameter solution preserves eight supercharges,
and we shall assume positive c without loss of generality.
If we consider motion in the periodic � direction at
constant r, the corresponding space-time curve becomes
timelike for r > 1=c, hence the closed timelike curves.

Though this seems like a perfectly valid solution to the
2003 The American Physical Society 231601-1



P H Y S I C A L R E V I E W L E T T E R S week ending
5 DECEMBER 2003VOLUME 91, NUMBER 23
way of realizing this fact is to notice that supertubes
[12,13] can exist in the above background. Supertubes
are bound states of D0-branes and fundamental strings
having nonvanishing D2-dipole moment. They can be
realized on the world volume of a cylindrical D2-brane
with electric and magnetic fields turned on, such that they
induce a nonvanishing angular momentum that balances
the tension which would naturally tend to collapse the
tube. In our discussion, supertubes extend in the y direc-
tion and wrap the angular direction � at fixed radius r. It
is not too surprising that this is the most interesting object
to probe the above geometry with, since it has the correct
rotational symmetry, and couples to all the background
fields that were turned on. As will also be made clear
below, this object preserves the same supersymmetries as
the Gödel-like universe itself. Even though the tension of
this supertube is just given by the sum of the D0-brane
and fundamental string charges, and it can have an arbi-
trary size (by adjusting these charges), we will find that
for a certain range of charges, some world-volume modes
develop a negative kinetic term whenever the radius sat-
isfies r � 1=c, so that the supertube wraps a closed time-
like curve. This sickness is somewhat like that found by
considering a probe brane in the repulson background,
which led to the enhançon mechanism [14]. Since the
dynamics of D-branes captures space-time itself, we in-
terpret this as an inconsistency of the Gödel solution.

The plan of the rest of the Letter is the following. In the
next section we shall briefly discuss the probe calculation
of a supertube in our Gödel universe, and show that the
world-volume theory may become sick at the radius
where closed timelike curves appear. Then we describe
a family of supergravity solutions that locally look like
the Gödel universe, but have a domain wall made out of
smeared supertubes separating them from a space that
does not have closed timelike curves asymptotically. The
domain wall in these solutions can be thought of as a
regulator, the initial solution (1) arising in the limit where
the domain wall is sent to infinity. One might think it
possible to enlarge the region inside the domain wall
to get closed timelike curves, but the same problem we
encountered in the full Gödel universe prevents this from
happening.

We conclude with some discussion of the analogy to
the enhançon mechanism and how similar problems show
up for other Gödel universes of supergravity, invalidating
them too.

Supertubes in a Gödel-like universe.—As mentioned in
the introduction, the type IIA Som-Raychaudhuri solu-
tion (1) has closed timelike curves. Thus, one may suspect
that an extended probe would develop some sickness in
this background. Our first goal is then to discuss the
possible probes in this background. This task is simplified
by the realization that the solution (1) is a particular case
of a family of IIA solutions discussed in [13,15]. The
authors of [13] prove that in general these solutions admit
231601-2
D0-branes, fundamental strings, and supertubes as probes
that do not break any further supersymmetry. Even better,
they perform a probe analysis of these solutions, and show
that when the solution presents closed timelike curves, the
world-volume theory on the supertube is ill defined. Our
computation is just a special case of theirs.

The supertube is a cylindrical D2-brane which is ex-
tended in the y direction as well as the angular direction
� at fixed radius r about the origin. [The metric (1) is
actually homogeneous. The addition of the supertube
breaks translational invariance, but preserves the rotation
around the origin.] The world-volume theory on the
supertube is just that of a D2-brane in a curved back-
ground, which includes the Dirac-Born-Infeld and Wess-
Zumino terms

S � �
Z

e��
������������������������������
� det�G �F �

p
�

Z
�C3 � C1 ^F �; (2)

where G is the pullback of the metric and C1 and C3 the
pullbacks of the RR potentials. The field strength F
includes the gauge fields that are turned on in the brane
and those induced by the NS field,

F � F� B2 � Edt ^ dy�Bdy ^ d�: (3)

E is the electric field and B � B� cr2 the magnetic field,
including the term induced by the background.

The equations of motion are solved by E � 1 (which is
not critical in the presence of magnetic field) and constant
B > 0, whereas the radius of the tube is fixed to be the
angular momentum J, related to the D0 and fundamental
string charge densities q0 � B and qs by r2 � J � q0qs.
(The positivity of the magnetic field is enforced by
supersymmetry.) It is a simple exercise to show that the
supertube preserves the same supersymmetries as the
background, which is also clear from the analysis of
the next section, where the metric (1) is shown to belong
to the family of metrics studied in [13].

After adjusting the electric and magnetic fields as
above, the Lagrangian density of the D-brane probe is
simply the magnetic field L � �B. The supertube ten-
sion is just given by the sum of charges it carries, that of
D0-branes and fundamental strings, as dictated by super-
symmetry. Therefore we can seemingly make the tube as
small or as large as we wish.

To verify that, we can start with a very small supertube
and slowly increase the radius. There are a number of
ways one could envision this happening. For instance, one
could imagine a bath of D0-branes and fundamental
strings surrounding the supertube, and allowing the
supertube to change its radius by exchanging charges
with the bath, satisfying the BPS condition at all times.
Perhaps more naturally, one can also consider fluctua-
tions of the radius, in time and/or in the y direction,
which do not preserve the BPS condition. In this latter
case, a nonzero potential would also appear.
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This calculation was done in [13] for the background
generated by a collection of supertubes, and is trivial to
adapt it to our metric. The result is that the expansion of
the Lagrangian at small velocities is

L � L0 �
1
2M _rr2 � . . . ; (4)

where the dots can contain a potential term if the fluc-
tuation does not preserve the BPS condition. L0 is the
static Lagrangian density and

M �
�B� cr2�2 � r2�1� c2r2�

B
(5)

is the mass of the excited mode. This is positive definite
for r < 1=c, but for larger radii, it becomes negative for a
certain range of charges.

How do we interpret this singularity? Usually when
we encounter that the metric in moduli space becomes
negative we interpret it as meaning that the effective
Lagrangian is not valid, because it is missing some light
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degrees of freedom. One then corrects the effective de-
scription by adding extra fields. An example that has some
similarities to our case is the enhançon mechanism [14],
where the tension of the probe vanishes. This is because
the D-brane gets delocalized, effectively forming a do-
main wall. In our case, the tension remains finite, but still
the kinetic term for small fluctuations vanishes signaling
that something is missing from the action. It is not exactly
clear if and how we should add extra degrees of freedom
to the case at hand. Recall that the Gödel universe (1) is
homogeneous, so this sickness can appear anywhere in
space.What we can safely conclude is that the solution (1)
is not a good string theory background.

A domain-wall solution.—In the previous section we
argued that the Gödel-type solution (1) cannot be a cor-
rect effective description of a string theory background.
Nevertheless, it is fairly easy to display supergravity
solutions that locally are similar to Gödel, but are free
of closed timelike curves. To do so, we start by recalling
the family of IIA solutions considered in [13,15],
ds2 ��U�1V�1=2�dt� A�2 �U�1V1=2dy2 � V1=2
X9
i�2

�dxi�2; B2 � �U�1�dt� A� ^ dy� dt ^ dy;

C1 ��V�1�dt� A� � dt; C3 � �U�1dt ^ dy ^ A; e� � U�1=2V3=4:
(6)
Here U and V are harmonic functions in the eight dimen-
sions spanned by xi, and A is a Maxwell field. Clearly the
IIA Gödel-like solution (1) is recovered if we take U �
V � 1 and A � �cr2d� (where r and � are polar coor-
dinates in the x2, x3 plane).

A very natural question is whether there are more
general configurations which are Gödel near the origin,
but are asymptotically different, with no closed timelike
curves. (The idea of patching another metric outside a
finite radius, to construct a solution free of closed time-
like curves, was considered for the original Gödel metric
in [16].) If we want to retain translation symmetry in R6

and rotational symmetry in �, any source must be
smeared in those directions, so U and V are harmonic
functions on the plane with rotational symmetry.

We construct the solution by taking U � V � 1 and
A � �cr2d� near the origin. At a radius R we put the
smeared supertube, and for r > R we choose

U � 1�
Qs

2�
ln
r
R
; V � 1�

Q0

2�
ln
r
R
;

A � �cR2d�:

(7)

Qs and Q0 are, respectively, the fundamental string and
D0-brane charge densities, and are still arbitrary. The
choice of A is motivated by requiring continuity of the
metric through the domain wall.

This space is identical to Gödel near the origin, but has
very different asymptotics. For example, it has finite
angular momentum, whereas for the original space it
diverges. Also, inside the domain wall there are constant
magnetic fields for the D0-brane and fundamental string,
while outside there are mainly electric fluxes (the rotation
of space mixes electric and magnetic fields). One bad
feature is that the dilaton grows as r ! 1.

It is easily verified that the solution satisfies the Israel
matching conditions [17], with the supertube stress-
energy tensor at the junction. Furthermore, the matching
fixes the D2-brane density in terms of c. A similar cal-
culation was done for the enhançon in [18].

There is a very good analog to these solutions in
electromagnetism—a charged solenoid. Outside there is
electric flux, with the potential behaving like a log. The
current around the solenoid will induce some magnetic
flux inside, but no electric fields.

From this construction it is also clear that the super-
tube preserves the same supersymmetries as the Gödel
metric (1). After all, the latter is just the metric induced
by a large collection of the same supertubes, but this
can also be verified directly by the same calculations as
in [13,15,19].

So far we did not specify the radius where the domain
wall is located. Clearly when R 
 1=c there are no closed
timelike curves within the domain wall, but it can also be
shown that there are no such curves outside the shell. At
most, if R � 1=c there are closed null curves on the shell
itself, which might warrant further study.

If we place the shell at a larger radius there will be
causality violating curves. It is therefore natural to think
of the full Gödel solution as the limit when the domain
wall is taken to infinity and the region outside discarded.
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This picture may provide a better laboratory for studying
the problems of the Gödel universe. In particular, if the
radius is only slightly larger than 1=c, there is only a thin
shell of closed timelike curves. So the sickness is not
spread over the entire space, and it may be possible to
describe a process by which the shell contracts to elimi-
nate the region with closed timelike curves.

In any event, it seems like those spaces cannot be
created. A calculation similar to the one carried out in
the preceding section will show that, if one tries to
increase the size of the region inside the shell, so it
exceeds R � 1=c, the same problems will appear, indicat-
ing that one cannot increase the radius of the shell further.

Discussion.—One of the most striking uses of D-branes
in string theory is as probes of space-time, often exposing
the limitations of supergravity, and providing a cure to
some of its pathological solutions. The enhançon mecha-
nism [14] provides a beautiful example of this. Studying
supertubes on the Gödel-like universe (1) teaches us a
similar lesson, that the naive supergravity solution is not
valid. As opposed to the enhançon case, we find that the
space is sick everywhere, and the question of how to
‘‘cure’’ it does not seem well posed.

Nevertheless, the domain-wall solutions we discussed
earlier locally look like Gödel universes, and present
certain analogies with the enhançon mechanism: in
both cases, we keep part of the original metric, and
replace the problematic part (the repulson singularity in
one case, the region with closed timelike curves in the
other) by another solution, separated by a shell formed by
the probes themselves. Of course, an obvious difference is
that in the enhançon case one keeps the asymptotic form
of the metric and changes the interior, while in our case
we do the opposite.

In this Letter we concentrated on a specific Gödel
universe solution of supergravity. Other solutions were
studied in [2,8,9] involving rotations in more planes. It
is a simple check to see that all the solutions in types IIA
and IIB suffer from the same problems we described. One
has to take the same supertube, or in some cases the
T-dual objects, and place them so that their circles follow
the closed timelike curves, and the rest of the calculation
is identical. Therefore all those spaces are not good string
theory backgrounds. We expect this to be a general
mechanism that eliminates many solutions with closed
timelike curves in string theory.
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