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Asymmetric Landau-Zener Tunneling in a Periodic Potential
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Using a simple model for nonlinear Landau-Zener tunneling between two energy bands of a Bose-
Einstein condensate in a periodic potential, we find that the tunneling rates for the two directions of
tunneling are not the same. Tunneling from the ground state to the excited state is enhanced by the
nonlinearity, whereas in the opposite direction it is suppressed. These findings are confirmed by
numerical simulations of the condensate dynamics. Measuring the tunneling rates for a condensate
of rubidium atoms in an optical lattice, we have found experimental evidence for this asymmetry.
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The phenomenon of Landau-Zener (LZ) tunneling [1]
is a basic quantum mechanical process. It is based on the
solution of the Schrodinger equation for a two-level dy-
namics when a parameter of the Hamiltonian system is
time dependent. If at time + = —oo the system is prepared
in one adiabatic state of the Hamiltonian, the time de-
pendence of the Hamiltonian implies that at time ¢t =
+o0o there is a finite probability that the system will
occupy the other adiabatic state. As far as this tunneling
behavior is concerned, complete symmetry exists be-
tween the adiabatic states. Variations of the LZ model
have been studied [2—4], and an observation of LZ dy-
namics in classical optical systems has been reported [5].
More recently, LZ tunneling within a periodic potential
was studied for a nonlinear two-level system in which the
level energies depend on the occupation of the levels [6,7].
It was discovered that a nonlinearity with a positive sign
enhances the tunneling probability between the ground
band and the first excited band. Moreover, Niu and co-
workers discovered a nonzero LZ tunneling probability
even in the fully adiabatic limit when the nonlinearity
was larger than a critical value [7]. Critical values for
deformations of the energy level structures were obtained
in Refs. [6,8,9]. In a Bose-Einstein condensate (BEC)
inside a periodic potential such as an optical lattice, the
mean-field interaction between the atoms can be compa-
rable to other energy scales of the system, and hence the
level-dependent energy shift can lead to an observable
modification of the tunneling behavior.

In the present work we explore, theoretically and ex-
perimentally, the Landau-Zener tunneling between Bloch
bands of a Bose-Einstein condensate in an accelerated
optical lattice. The optical lattice depth controls the tun-
neling barrier, while the optical lattice acceleration con-
trols the time dependence of the Hamiltonian. We show
that the mean-field nonlinearity produces an asymmetry
for the tunneling probability. More precisely, the tunnel-
ing probability from the lower energy adiabatic state to
the upper one is enhanced, while the inverse tunneling
probability is suppressed. Numerical integration of the
one-dimensional Gross-Pitaevskii equation and a simple
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two-state model demonstrate this asymmetry. Moreover,
our experimental data obtained with a rubidium Bose-
Einstein condensate confirms this prediction.

The asymmetry in the tunneling transition probabil-
ities can be explained qualitatively as follows: The
nonlinear term of the Schrodinger equation acts as a
perturbation whose strength is proportional to the energy
level occupation. If the initial state of the condensate in
the lattice corresponds to a filled lower level of the state
model, then the lower level is shifted upward in energy
while the upper level is left unaffected. This reduces the
energy gap between the lower and upper levels and en-
hances the tunneling. On the contrary, if all atoms fill the
upper level, then the energy of the upper level is increased
while the lower level remains unaffected. This enhances
the energy gap and reduces the tunneling.

The motion of a Bose-Einstein condensate in an accel-
erated 1D optical lattice (see Fig. 1) is described by the
Gross-Pitaevskii equation
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where M is the atomic mass, k;, = 7/d is the optical
lattice wave number with d the optical lattice step, and
Vy is the strength of the periodic potential depth. The
s-wave scattering length a, determines the nonlinearity
of the system. Equation (1) is written in the comoving
frame of the lattice, so the inertial force Ma; appears as a
momentum modification. The wave function ¢ is normal-
ized to the total number of atoms in the condensate, and
we define ny as the average uniform atomic density.
Defining the dimensionless quantities E,.. = h*k /2M,
% =2k x, = 8E,t/l, and rewriting ¢ = N
Vo/16E,., & = May /16E,..k;, C = mwany/k?, Eq. (1) is
cast in the following form [7]:
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FIG. 1. Band structure of a BEC in an optical lattice (V,, =
2E...) and LZ tunneling [ground to excited state (a) and excited
to ground state (b)]. When the BEC is accelerated across the
edge of the Brillouin zone (BZ) at quasimomentum 1, LZ
tunneling can occur. Further acceleration will result in the
condensate part in the upper level undergoing LZ tunneling
to higher bands with a large probability (due to the smaller gaps
between higher bands), leaving them essentially unaffected by
the lattice. After the first crossing of the edge of the BZ,
increasing the lattice depth and decreasing the acceleration
leads to a much reduced tunneling rate from the ground-state
band at successive BZ-edge crossings (see text).

where we have replaced ¥ with x, etc. In the neighborhood
of the Brillouin zone edge we can approximate the wave
function by a superposition of two plane waves (the two-
level model of Ref. [7]), assuming that only the ground
state and the first excited state are populated. We then
substitute (x, 1) = a(r)e'?™ + b(r)e!a=Vx with |a(r)|? +
|b(1)|?> = 1, in Eq. (2). Comparing the coefficients of e/~
and ¢'@~1* linearizing the kinetic terms, and dropping
the irrelevant constant energy 1/8 + C[1 + (Ja|> +
|b]?)/2], Eq. (2) assumes the form

.0 fa\ [at v a C s L2 a
i ()= [703 + 5"&(;;)*5(“" o[ )
(3)

where o;, i = 1,2,3, are the Pauli matrices [10]. The
adiabatic energies of Eq. (3) have a butterfly structure at
the band edge of the Brillouin zone for C = v [7-9], but
in the present work we always work in a regime where
C < v; hence that structure plays no role.
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In the linear regime (C = 0), evaluating the transition
probability in the adiabatic approximation, we find the
linear LZ formula for the tunneling probability r

r=e ™/ €))

In the nonlinear regime, as the nonlinear parameter C
grows, the lower to upper tunneling probability grows as
well. The upper to lower tunneling probability, on the
other hand, decreases with increasing nonlinearity [11].
We derived the tunneling rate from the numerical inte-
gration of Eq. (3). In Fig. 2(a) we plot the lower to upper
tunneling rates [initial (a, b) = (1, 0)] and the upper to
lower tunneling rates [initial (a, b) = (0, 1)] of the Bose-
Einstein condensate as a function of the nonlinear pa-
rameter C for different accelerations of the optical lattice.
We see that for C = 0 the rate is the same for both
tunneling directions, whereas for C # 0 the two rates
are different, and the smaller the acceleration the larger
the difference. This result is intuitive since for very small
accelerations the main contribution originates from the
nonlinear effect [the linear tunneling of Eq. (4) being
small], while for large accelerations the main contribution
comes from the linear effect. We confirmed the presence
of a tunneling asymmetry by integrating directly Eq. (1)
(taking into account the full experimental protocol

0.8

5 be—meooo-oomoommommmmmm e
= 0.6
%1 L=
o Ll cemmmmmmmm-
=
T e
Q
=1
s | _ia==-
I ey
ot

I

0.0 T T T

000 002 004 006 008 010 012 0.14

C

0.8
o 074 —
g
o 0.6
=05+ % b)
=1
S 04 619" "%—'
=}
e
= 034

02 . ; . . , : :

000 002 004 006 008 010 012 0.4

C

FIG. 2. LZ tunneling rate r within the two-level model as a
function of the nonlinear parameter C for different acceler-
ations. Results are for v = 0.134 corresponding to V, =
2.2E.., in (a) for @ = 0.01, 0.04, 0.07, corresponding to a; =
0.8, 3.2, 5.6 ms~?2 from bottom to top, and in (b) for & = 0.036
corresponding to a; =29 ms 2. In (a), the dashed (solid)
lines correspond to tunneling from the excited (ground-state)
band. In (b) experimental results denoted by open (filled)
symbols correspond to tunneling from the excited (ground
state) band. The experimental points at C = 0.025 have been
rescaled from Fig. 4 using the Landau-Zener formula to match
the acceleration to the one used to obtain the other experimen-
tal points. The shaded area represents the confidence region for
the prediction of the two-level model, taking into account the
uncertainty in our measurement of the lattice depth.

230406-2



VOLUME 91, NUMBER 23

PHYSICAL REVIEW LETTERS

week ending
5 DECEMBER 2003

described below), finding qualitative agreement with the
prediction of the two-state model. For small C values, we
have fitted the C dependence of the tunneling rate of
Fig. 2(a) through the following expression [6,7]:

I”(C) — e*(ﬂ'vz/Za)(liBC/v) (5)

with 8 = 0.75,0.17,0.14 for the different acceleration
values.

Experimentally, we investigated the asymmetric tun-
neling using a setup described in detail in [12,13]. Briefly,
we create condensates of N = 10* rubidium atoms in a
time-orbiting potential trap. Once condensation has been
achieved, the mean trapping frequency 7y, of the mag-
netic trap is adiabatically reduced to values between 15
and 50 Hz. Thereafter, two laser beams with waists of
1.8 mm and intersecting at an angle # = 38° at the posi-
tion of the condensate are switched on with a linear ramp
of duration 7, = 10 ms, thus ensuring adiabaticity of
the loading process. The beams are detuned to the red side
of the rubidium atomic resonance by = 30 GHz and have
a variable frequency difference Av between them, con-
trollable through two acousto-optic modulators which are
also used to vary the intensity of the beams. In this way, a
periodic potential with lattice constant d = 1.18 pm and
lattice recoil energy E.../h = 455 Hz is created, which
through the frequency difference Ay can be made to
move at a constant velocity v = dAv or accelerated
with a; = d922.

Landau-Zener tunneling between the two lowest en-
ergy bands of a condensate inside an optical lattice is
investigated in the following way (see Fig. 1). Initially,
the condensate is loaded adiabatically into one of the two
bands. Subsequently, the lattice is accelerated in such a
way that the condensate crosses the edge of the Brillouin
zone once, resulting in a finite probability for tunneling
into the other band (higher-lying bands can be safely
neglected as their energy separation at the edge of the
Brillouin zone is much larger than the band gap). After
the tunneling event, the two bands have populations re-
flecting the Landau-Zener tunneling rate (assuming that,
initially, the condensate populated one band exclusively).
In order to experimentally determine the number of
atoms in the two bands, we then increase the lattice depth
(from = 2FE, .. to = 4E,..) and decrease the acceleration
(from = 3 ms~2 to = 2ms~2). In this way, successive
crossings of the band edge will result in a much reduced
Landau-Zener tunneling probability (of order a few per-
cent). The fraction of the condensate that after the first
tunneling event populated the ground-state band will,
therefore, remain in that band, whereas the population
of the first excited band will undergo tunneling to the
second excited band with a large probability (around
90%) as the relevant gap is smaller by a factor of = 5
for our parameters. Once the atoms have tunneled into the
second excited band, they essentially behave as free par-
ticles since higher-lying band gaps are smaller still, so
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they will no longer be accelerated by the lattice. In
summary, using this experimental sequence we selec-
tively accelerate that part of the condensate further that
populates the ground-state band. In practice, in order to
get a good separation between the two condensate parts
after a time of flight, we accelerate the lattice to a final
velocity of 4 — 6v,.. [14] and absorptively image the
condensate after 22 ms (see Fig. 3).

In order to investigate tunneling from the ground-state
band to the first excited band [Fig. 1(a)], we adiabatically
ramped up the lattice depth with the lattice at rest and
then started the acceleration sequence. The tunneling
from the first excited to the ground-state band is inves-
tigated [Fig. 1(b)] by initially preparing the condensate in
the first excited band by moving the lattice with a velocity
of 1.5v,. when switching it on. In this way, in order to
conserve energy and momentum, the condensate must
populate the first excited band at a quasimomentum half-
way between zero and the edge of the first Brillouin zone
[15]. Thereafter, the same acceleration sequence as de-
scribed above is used. For both tunneling directions, the
tunneling rate is measured as

= Ntunnel (6)

s
N tot

where N, is the total number of atoms measured from the
absorption picture. For the tunneling from the first excited
band to the ground band, Ny, 1S the number of atoms
accelerated by the lattice, i.e., those detected in the final
velocity class 4 v,,., whereas for the inverse tunneling
direction, Ny, 1S the number of atoms detected in the
v = 0 velocity class.
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FIG. 3. Profiles of absorption images taken after 22 ms of
time of flight of condensates released after the acceleration
procedure described in the text. The condensates were prepared
in the ground-state band in (a) and in the first excited band in
(b) in an optical lattice with depth V, = 2.6E,. and a; =
2.9 ms 2.
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FIG. 4. Landau-Zener tunneling between the two lowest en-
ergy bands of a condensate in an optical lattice as a function of
the lattice depth (carrying a =10% systematic error) for a =
0.025 corresponding to a; = 2.0 ms~2. Tunneling rates from
the ground-state band to the first excited band (filled symbols)
and vice versa (open symbols) are virtually identical and agree
with the linear prediction (dashed line) as the nonlinear pa-
rameter C = (0.025 is small for the trap used in these measure-
ments (Vy,, = 15 Hz).

In Fig. 4 we report the two tunneling rates as a function
of lattice depth for a condensate in a weak magnetic trap
and hence a small value of the interaction parameter C
[16]. In this case, both tunneling rates are essentially the
same and agree well with the linear Landau-Zener pre-
diction. By contrast, when C is increased, the two tunnel-
ing rates begin to differ, as can be seen in Fig. 2(b).
Qualitatively we find agreement with the theoretical pre-
dictions of the nonlinear Landau-Zener model, whereas
quantitatively there are significant deviations. We believe
these to be partly due to experimental imperfections. In
particular, the sloshing (dipolar oscillations) of the con-
densate inside the magnetic trap can lead to the conden-
sate not being prepared purely in one band due to
nonadiabatic mixing of the bands if the initial quasimo-
mentum is too close to a band gap. Furthermore, a nu-
merical simulation of the experiment shows that for large
values of C, for which the magnetic trap frequency was
large, the measured tunneling rates are significantly
modified by the presence of the trap. We have, however,
verified that when C in the simulation is varied without
varying the trap frequency, the asymmetric tunneling
effect persists. In order to test our theory more quantita-
tively in BEC systems, the condensate could be held in
an optical dipole trap with a small longitudinal trap
frequency.

In summary, we have numerically simulated Landau-
Zener tunneling between two energy bands in a periodic
potential and found that, in the presence of a nonlinear
interaction term, an asymmetry in the tunneling rates
arises. Experimentally, we have measured these tunnel-
ing rates for different values of the interaction parameter
and found qualitative agreement with the simulations.
Future experiments could probe the complicated and
time-dependent tunneling behavior due to the changing
tunneling rate for multiple crossings of the zone edge.
Furthermore, when the two lowest bands are initially
equally populated, the tunneling behavior should again
be linear. We also note here that the phenomenon of
asymmetric tunneling should be a rather general feature
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of quantum systems exhibiting a nonlinearity. For in-
stance, calculating the energy shift due to a nonlinearity
for two adjacent levels of a harmonic oscillator, one finds
that both levels are shifted upwards in energy, the
shift being proportional to the population of the respec-
tive level. The energy difference between the levels,
therefore, decreases if only the lower state is populated
and increases if all the population is in the upper
level. Finally, we note that state-dependent mean-field
shifts have also been observed in measurements of the
clock shift in ultracold and Bose-condensed atomic
samples [18].
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