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Bell’s Theorem without Inequalities and without Alignments
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A proof of Bell’s theorem without inequalities is presented which exhibits three remarkable proper-
ties: (a) reduced local states are immune to collective decoherence; (b) distant local setups do not need
to be aligned, since the required perfect correlations are achieved for any local rotation of the local
setups; (c) local measurements require only individual measurements on the qubits. Indeed, it is shown
that this proof is essentially the only one which fulfills (a), (b), and (c).

DOI: 10.1103/PhysRevLett.91.230403 PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.Hk
distinguishing between them and, as a consequence of
the interaction, all qubits undergo the same unknown but

qubits, each observer randomly chooses to measure either
F or G, defined as
The proofs of Bell’s theorem without inequalities [1–6]
are based on the existence, predicted by quantum me-
chanics, of certain perfect correlations between results of
spacelike separated measurements. However, perfect (or
almost perfect) correlations between results of distant
measurements are difficult to achieve in real experiments
[7]. Besides ‘‘practical’’ reasons such as imperfect prepa-
rations or imperfect detector efficiencies [8], there are
two main difficulties for obtaining perfect correlations
between distant measurements. The first is decoherence,
i.e., the fact that reduced quantum states suffer unwanted
couplings with the environment during their flight to the
distant regions. The second is the need for a perfect
alignment between the source emitting entangled states
and the setups of the distant measurements [9]. For the
proofs [1–6], any imperfection in the required align-
ments leads to the disappearance of the required perfect
correlations.

In this Letter, it is shown that both difficulties can be
overcome. For this purpose, a proof of Bell’s theorem
without inequalities for two observers is introduced.
This proof exhibits three remarkable properties: (a) Re-
duced local states are immune to collective decoherence,
(b) distant local setups do not need to be aligned, since
the required perfect correlations are achieved for any
local rotation of the local setups, and (c) local measure-
ments require only individual measurements on the qu-
bits. Property (c) is very useful for practical purposes
because, as shown below, in order to fulfill (a) and (b),
each of the two local subsystems should consist of at
least four qubits. Indeed, it will be shown that the pro-
posed proof is essentially the only one which fulfills (a),
(b), and (c).

We shall assume that, during their flight, the reduced
quantum states suffer a particularly relevant form of
decoherence known as collective decoherence [10–13].
Collective decoherence occurs whenever the spatial/
temporal separation between the qubits is small relative
to the correlation length/time of the environment. In this
scenario, the environment couples with the qubits without
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unitary evolution. Therefore, a state j i of N qubits is
immune to collective decoherence if and only if j i is
invariant under the tensor product of N equal unitary
operators, i.e., U

N
Nj i � j i [10–13]. States of this

type exist for N even and the smallest nontrivial subspace
spanned by such states occurs for N � 4 qubits [10–13].

Strategies to establish a common direction or Cartesian
frame between distant observers to any desired accuracy
have attracted much attention in recent times [14–18].
These papers have drawn attention to two points relevant
to our discussion. First, a shared common reference frame
so that distant observers may prepare and measure spin
components relative to it should not be considered a free
preexisting element in any communication scenario but
should instead be considered an expensive resource.
Second, if such a resource is not given, establishing a
perfect alignment between local reference frames re-
quires an infinite amount of communication. This has
motivated the interest in methods for the distribution of
quantum information between parties who do not share
any reference frame [19,20].

The proposed proof of Bell’s theorem without inequal-
ities is as follows. Consider a source emitting systems of
eight qubits prepared in the state

j�i � �j�0�0i �
���
3

p
j�0�1i �

���
3

p
j�1�0i�=

���
7

p
; (1)

where j�0i and j�1i are the two singlet states obtained
adding up four spin- 12 momenta,

j�0i �
1
2�j0101i � j0110i � j1001i � j1010i�; (2)

j�1i �
1

2
���
3

p �2j0011i � j0101i � j0110i � j1001i

� j1010i � 2j1100i�: (3)

These states were introduced by Kempe et al. in the
context of decoherence-free fault-tolerant universal
quantum computation [13]. Let us suppose that the first
four qubits prepared in j�i fly to Alice and the second
four qubits fly to a distant observer, Bob. On her/his four
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F � �j�0ih�0j � j�1ih�1j; (4)

G � �j 0ih 0j � j 1ih 1j; (5)

where j 0i and j 1i are obtained, respectively, from j�0i
and j�1i, by permuting qubits 2 and 3; i.e.,

j 0i �
1
2�j0011i � j0110i � j1001i � j1100i�

� 1
2�j�0i �

���
3

p
j�1i�; (6)

j 1i �
1

2
���
3

p ��j0011i � 2j0101i � j0110i � j1001i

� 2j1010i � j1100i�

�
1

2
�

���
3

p
j�0i � j�1i�: (7)

The observable F (G) has three two possible outcomes:
�1, corresponding to j�0i (j 0i), 1 corresponding to j�1i
(j 1i), and 0, which never occurs because the local sub-
systems have total spin zero. Measuring F is thus equiva-
lent to distinguishing with certainty between j�0i and
j�1i with a single test on the four qubits, and measuring
G is equivalent to distinguishing with certainty between
j 0i and j 1i. Alice’s measurements on qubits 1 to 4 are
assumed to be spacelike separated from Bob’s measure-
ments on qubits 5 to 8.

The state j�i can also be expressed as

j�i � �4j�0 0i �
���
3

p
j�1 0i � 3j�1 1i�=2

���
7

p
(8)

� �4j 0�0i �
���
3

p
j 0�1i � 3j 1�1i�=2

���
7

p
(9)

� �7j 0 0i � 3
���
3

p
j 0 1i � 3

���
3

p
j 1 0i � 3j 1 1i�=4

���
7

p
:

(10)

Moreover, since j�0i, j�1i, j 0i, and j 1i are invariant
under the tensor product of four equal unitary operators,
then they are invariant under local rotations. Therefore,
expressions (1) and (8)–(10) remain unchanged after local
rotations. Consequently, if RA and RA (RB and RB) are
rotations of Alice’s (Bob’s) setups for measuring, respec-
tively, F and G relative to the reference frame of the
source then, in the state j�i, for any rotations RA, RA,
RB, and RB,

P�RAF � 1; RBF � 1� � 0; (11)

P�RAF � 1 jRBG � 1� � 1; (12)

P�RBF � 1 jRAG � 1� � 1; (13)

P�RAG � 1;RBG � 1� �
9

112
; (14)

where P�RAF � 1; RBF � 1� is the joint probability that
both Alice and Bob obtain the outcome 1 when both
perform experiment F (or any experiment consisting on
independently rotating their setups for measuring F), and
230403-2
P�RAF � 1 jRBG � 1� is the probability that Alice ob-
tains the outcome 1 when she performs experiment F (or
any experiment consisting on rotating her setup for mea-
suring F), conditioned to Bob obtaining the outcome 1
when he performs experiment G (or any experiment
consisting on rotating his setup for measuring G).

From property (14), if both Alice and Bob choose the
setup for measuring G, then in 8% of the events the
outcome is 1 in both cases. This is true even if Alice
applies any rotation RA to her setup and Bob applies any
rotation RB to his setup.

From property (13), if Alice measures G and obtains
the outcome 1, then she can predict with certainty that, if
Bob measures F, he will obtain 1. According to Einstein,
Podolsky, and Rosen (EPR), this fact must be inter-
preted as sufficient evidence that there is a local ‘‘element
of reality’’ in Bob’s qubits determining this outcome [21].
Moreover, EPR reasoning seems to be even more ines-
capable in our example, since Alice’s prediction with
certainty is valid even if Alice applies any rotation RA
to her setup for measuringG and Bob applies any rotation
RB to his setup for measuring F.

Analogously, from property (12), if Bob measures G
(or RAG) and obtains 1, then he can predict with
certainty that, if Alice measures F (or RAF), she will
obtain 1. Again, according to EPR, there must be a local
element of reality in Alice’s qubits determining this
outcome.

Therefore, assuming EPR’s point of view, for at least
8% of the systems prepared in the state j�i, there must be
two joint local elements of reality: one for Alice’s qubits,
corresponding to RAF � 1, and one for Bob’s qubits,
corresponding to RBF � 1. However, this inference is in
contradiction with property (11), which states that the
joint probability of obtaining the outcomes RAF � 1
and RBF � 1 is zero. This provides a simple and powerful
proof that the concept of element of reality, as defined by
EPR, is incompatible with quantum mechanics, even if
the predictions with certainty are valid not only for a
particular alignment of the distant setup but for any
possible alignment.

The logical argument in the previous proof is similar to
the one in Hardy’s [4]. However, this proof exhibits some
remarkable features.

(a) Partial states are immune to collective decoher-
ence.—While the reduced states required in previous
proofs of Bell’s theorem without inequalities [1–6] are
destroyed under collective decoherence, the reduced
states used in the proof above are immune to collective
decoherence. This can be seen by expressing the reduced
density matrix describing both local states as

� � 
�7�
������
13

p
�j��ih��j � �7�

������
13

p
�j��ih��j�=14;

(15)

where
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j��i � 
�1�
������
13

p
�j�0i � 2

���
3

p
j�1i�=

�����������������������
26� 2

������
13

pq
: (16)

Since j�0i and j�1i are invariant under any tensor prod-
uct of four equal unitary operators, then any incoherent
superposition of them, such as �, is also invariant and
therefore is immune to collective decoherence.

(b) Distant local setups do not need to be aligned, since
the required perfect correlations are achieved for any
local rotation of the setups.—This property is derived
from the fact that measuring the local observable F (G)
is equivalent to distinguishing with certainty between
the orthogonal states j�0i and j�1i (j 0i and j 1i), and
that both states (and thus any other two states obtained
by permuting qubits) are invariant under any tensor prod-
uct of four equal unitary operators, and thus under any
local rotation of the setup for measuring F (G).

(c) Local observables can be measured by means of
tests on individual qubits.—A practical advantage and a
very remarkable property of this proof is that measuring
F or G does not require collective measurements on two
or more qubits but instead a single test on each of the four
qubits. Measuring F is equivalent to distinguishing be-
tween j�0i and j�1i with a single test. Remarkably, the
only two orthogonal states invariant under any tensor
product of four equal unitary operators that can be reli-
ably distinguished by fixed (as opposed to conditioned, as
those in [22]) measurements on the four individual qubits
are j�0i and j�1i and those obtained from them by
permuting qubits (such as j 0i and j 1i). To prove this,
let us consider two orthogonal states invariant under any
tensor product of four equal unitary operators,

j i � cos!j�0i � sin!j�1i; (17)

j ?i � sin!j�0i � cos!j�1i: (18)

States j i and j ?i are reliably distinguishable by fixed
measurements on the four individual qubits if and only if
there is an orthogonal local basis fj0ai � j0bi � j0ci �
j0di; . . . ; j1ai � j1bi � j1ci � j1dig in which, for all j
such that the j component of j i (j ?i) is not zero, then
the j component of j ?i (j i) is necessarily zero. Since
j i and j ?i are invariant under any tensor product of
four equal unitary operators, we can restrict our atten-
tion, without losing generality, to the case of spin mea-
surements in the x-z plane. Then, orthogonal local bases
are composed by states of the form

j0ai � cos�aj0i � sin�aj1i; (19)

j1ai � sin�aj0i � cos�aj1i: (20)

If j i and j ?i are distinguishable in a basis of this type,
then, when expressed in such a basis, the first component
of one of the two states must be zero. After some algebra,
it can be seen that a necessary condition for the first
component of j i to be zero is
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cot! �
1���
3

p csc��a � �b� csc��c � �d�

� 
cos��a � �b � �c � �d�

� cos��a � �b� cos��c � �d��: (21)

This condition makes zero both the first and the last
component of j i. Components two to eight can be ex-
pressed in terms of !, �a, �b, �c, and �d. Components
nine to 15 are identical to components two to eight but in
reverse order and with opposite signs. If j i and j ?i are
distinguishable in a basis of this type, then more compo-
nents should also be zero. The important point is that the
cost of obtaining more zeroes is to restrict the possible
values of!. It can be checked that any way to make more
than four zeros (one of the two orthogonal states must
have more than four zeros) requires

! � n�=6 (22)

(with n integer). We therefore conclude that the only two
four-qubit states invariant under any tensor product of
four equal unitary operators that are reliably distin-
guishable by fixed measurements on individual qubits
are those with! � n�=6 (with n integer). Note, however,
that these states are precisely those obtained from j�0i
and j�1i by permuting qubits.

We shall now show that, to distinguish with certainty
between j�0i and j�1i, it is enough to measure the spin
component of the first two qubits along the same direc-
tion and the spin component of the other two qubits along
a perpendicular direction. This can be seen by resorting to
the invariance under any tensor product of four equal
unitary operators and expressing these states in the basis
of eigenstates of �z1 � �z2 � �x3 � �x4,

j�0i �
1
2��j01�00 �11i � j01�11 �00i � j10�00 �11i � j10�11 �00i�; (23)

j�1i �
1

2
���
3

p �j00�00 �00i � j00�00 �11i � j00�11 �00i � j00�11 �11i

� j01�00 �00i � j01�11 �11i � j10�00 �00i � j10�11 �11i

� j11�00 �00i � j11�00 �11i � j11�11 �00i � j11�11 �11i�; (24)

where �zj0i � j0i, �zj1i � �j1i, �xj�00i � j�00i, �xj�11i �
�j�11i [j�00i � �j0i � j1i�=

���
2

p
and j�11i � �j0i � j1i�=

���
2

p
].

According to (23) and (24), if the measurements on the
individual qubits are �z1, �z2, �x3, �x4 (or any rotation
thereof), then, among the 16 possible outcomes, four
occur (with equal probability) only in the state j�0i,
and the other 12 occur (with equal probability) only in
the state j�1i (this has been experimentally demonstrated
in [20]). Therefore, to measure F (G), it is enough to
measure the spin component of qubits 1 and 2 (1 and 3)
along the same direction and the spin component of the
other two qubits along a perpendicular direction.

(d) Contradiction is nearly optimal.—The fact that,
except for permutations of the qubits, the only two
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orthogonal four-qubit states invariant under any tensor
product of four equal unitary operators that can be reli-
ably distinguished by fixed measurements on individual
qubits are j�0i and j�1i means that the only local ob-
servables whose eigenvectors are invariant under any
tensor product of four equal unitary operators and can
be reliably distinguished by fixed measurements on the
four individual qubits are, precisely, F and G. This enor-
mously restricts the possible proofs of Bell’s theorem
without inequalities which satisfy (a), (b), and (c). By
checking every possible combination of states and ob-
servables, it can be seen that the proof presented here
exhibits the maximum probability, 9

112 � 0:08, for a
Hardy-like contradiction satisfying (a), (b), and (c).With-
out requirement (c), it can be proven (as in [4]) that the
maximum probability for a Hardy-like contradiction is

�

���
5

p
� 1�=2�5 � 0:09. Therefore, the maximum probabil-

ity for a Hardy-like contradiction satisfying (a), (b),
and (c) is close to the optimal probability without these
requirements.

In summary, some recent methods of decoherence-free
fault-tolerant universal quantum computation have been
used to illustrate that some difficulties that were previ-
ously assumed to be inherent to any proof of Bell’s
theorem without inequalities can indeed be overcome.

On the experimental side, while the four-qubit states
j�0i and j�1i have already been prepared and their im-
munity to collective decoherence and invariance under
local rotations tested in a laboratory [20], preparing en-
tangled superpositions thereof, such as j�i, is a significant
goal for future research.
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