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Radiation-Induced Magnetoresistance Oscillation in a Two-Dimensional Electron Gas
in Faraday Geometry
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Microwave-radiation induced giant magnetoresistance oscillations recently discovered in high-
mobility two-dimensional electron systems are analyzed theoretically. Multiphoton-assisted impurity
scatterings are shown to be the primary origin of the oscillation. Based on a theory which considers the
interaction of electrons with electromagnetic fields and the effect of the cyclotron resonance in Faraday
geometry, we are able not only to reproduce the correct period, phase, and the negative resistivity of
the main oscillation, but also to predict the secondary peaks and additional maxima and minima
observed in the experiments. These peak-valley structures are identified to relate, respectively, to
single-, double-, and triple-photon processes.
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field, obtaining the correct period, phase, and the pos-
sible negative resistivity. Shi and Xie [11] reported a

confining potential V�z� in the z direction. These elec-
trons, in addition to interacting with each other, are
The discovery of a new type of giant magnetoresis-
tance oscillations in a high-mobility two-dimensional
(2D) electron gas (EG) subject to a crossed microwave
(MW) radiation field and a magnetic field [1–5], espe-
cially the observation of ‘‘zero-resistance’’ states devel-
oped from the oscillation minima [4–7], has revived
tremendous interest in magnetotransport in 2D electron
systems [8–13]. These radiation-induced oscillations of
longitudinal resistivity Rxx are accurately periodical in
1=B, the inverse magnetic field, with the period deter-
mined by the MW frequency ! rather than the electron
density Ne. The observed Rxx oscillations exhibit a
smooth magnetic-field variation with resistivity maxima
at!=!c � j� 	� and minima at!=!c � j� 	� (!c is
the cyclotron frequency, j � 1; 2; 3; . . . ) having positive
	� around 1

4 [4]. The resistivity minimum goes downward
with increasing sample mobility and/or increasing radia-
tion intensity until a ‘‘zero-resistance’’ state shows up,
while the Hall resistivity keeps the classical form Rxy �
B=Nee with no sign of a quantum Hall plateau over the
whole magnetic-field range exhibiting Rxx oscillation.

To explore the origin of the peculiar zero-resistance
states, different mechanisms have been suggested [8–13].
It is understood that the appearance of negative longitu-
dinal resistivity or conductivity in a uniform model suf-
fices to explain the observed vanishing resistance [9]. The
possibility of absolute negative photoconductance in a
2DEG subject to a perpendicular magnetic field was first
explored 30 years ago by Ryzhii [14,15]. Recent works
[8,10,11] indicated that the periodical structure of the
density of states (DOS) of the 2DEG in a magnetic field
and the photon-excited electron scatterings are the origin
of the magnetoresistance oscillations. Durst et al. [8]
presented a microscopic analysis for the conductivity
assuming a 	-correlated disorder and a simple form of
the 2D electron self-energy oscillating with the magnetic
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similar result using the Tien and Gorden current formula
[16] for photon-assisted coherent tunneling. In these stud-
ies, however, the magnetic field is to provide an oscilla-
tory DOS only and the high frequency (HF) field enters as
if there is no magnetic field or with a magnetic field in
Voigt configuration. The experimental setup requires us to
deal with the magnetic field B perpendicular to the HF
electric field. In this Faraday configuration, the electron
moving due to HF field experiences a Lorentz force which
gives rise to additional electron motion in the perpen-
dicular direction. In the range of !�!c, the electron
velocities in both directions are of the same order of
magnitude and are resonantly enhanced. This cyclotron
resonance (CR) of the HF current response will certainly
change the way the photons assist the electron scattering.

In this Letter, we construct a microscopic model for
the interaction of electrons with electromagnetic fields in
Faraday geometry. The basic idea is that, under the influ-
ence of a spatially uniform HF electric field, the center-
of-mass (c.m.) of the whole 2DEG in a magnetic field
performs a cyclotron motion modulated by the HF field of
frequency !. In an electron gas having impurity and/or
phonon scatterings, there exist couplings between this
c.m. motion and the relative motion of the 2D electrons.
It is through these couplings that a spatially uniform HF
electric field affects the relative motion of electrons by
opening additional channels for electron transition be-
tween different states. Based on the theory for photon-
assisted magnetotransport developed from this physical
idea, we show that the main experimental results of the
radiation-induced magnetoresistance oscillations can be
well reproduced. We also obtain the secondary peaks
and additional maxima and minima observed in the ex-
periments [5,7].

For a general treatment, we consider Ne electrons in a
unit area of a quasi-2D system in the x-y plane with a
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scattered by random impurities or disorders and by
phonons in the lattice. To include possible elliptically
polarized MW illumination, we assume that a uniform
dc electric field E0 and ac field Et � Es sin�!t� �
Ec cos�!t� of frequency ! are applied in the x-y plane,
together with a magnetic field B � �0; 0; B� along the z
direction. In terms of the 2D c.m. momentum and coor-
dinate of the electron system [17–19], which are defined
as P �

P
jpjk and R � N�1

e

P
jrjk with pjk � �pjx; pjy�

and rjk � �xj; yj� being the momentum and coordinate of
the jth electron in the 2D plane, and the relative-electron
momentum and coordinate p0

jk � pjk � P=Ne and r0jk �
rjk �R, the Hamiltonian of the system can be written as
the sum of a c.m. partHc:m: and a relative-motion partHer

[A�r� is the vector potential of the B field]:

Hc:m: �
1

2Nem
�P� NeeA�R��2 � Nee�E0 �Et� R;

(1)

Her �
X
j

�
1

2m
�p0
jk � eA�r0jk��

2 �
p2jz
2mz

� V�zj�
�

�
X
i<j

Vc�r0ik � r0jk; zi; zj�; (2)

together with the couplings of electrons to impurities and
phonons, Hei and Hep. Here m and mz are, respectively,
the electron effective mass parallel and perpendicular to
the plane, and Vc stands for the electron-electron
Coulomb interaction. Note that, although in Hc:m: and
Her the c.m. and the relative-electron motion are com-
pletely separated, the c.m. coordinate R enters Hei and
Hep [18,19]. Starting from the Heisenberg operator equa-
tions for the rate of change of the c.m. velocity _VV �
�i�V; H� � @V=@t with V � �i�R; H�, and that of the
relative-electron energy _HHer � �i�Her; H�, we proceed
with the determination of their statistical averages.

The c.m. coordinate R and velocity V in these equa-
tions can be treated classically, i.e., as the time-dependent
expectation values of the c.m. coordinate and velocity
[18], R�t� and V�t�, such that R�t� �R�t0� �

R
t
t0 V�s� ds.

We are concerned with the steady transport under an
irradiation of single frequency and focus on the photon-
induced dc resistivity and the energy absorption of the HF
field. These quantities are directly related to the time-
averaged and/or base-frequency oscillating components
of the c.m. velocity. At the same time, in an ordinary
semiconductor the effect of higher harmonic current is
safely negligible for the HF field intensity in the experi-
ments. Hence, it suffices to assume that the c.m. velocity,
i.e., the electron drift velocity, consists of a dc part v0 and
a stationary time-dependent part

V �t� � v0 � v1 cos�!t� � v2 sin�!t�: (3)

This time-dependent c.m. velocity enters all the operator
equations having couplings to impurities and/or phonons
226805-2
in the form of the following exponential factor, which can
be expanded in terms of Bessel functions Jn�x�:

e�iq
R
t

t0
V�s�ds �

X1
n��1

J2n���ei�qv0�n!��t�t
0� �

X
m�0

eim�!t�’�

�
X1
n��1

Jn���Jn�m���e
i�qv0�n!��t�t0�:

Here � �
��������������������������������������������
�qk  v1�2 � �qk  v2�2

q
=! and tan’ � �q  v2�=

�q  v1�. On the other hand, for 2D systems having elec-
tron sheet density of the order of 1015 m�2, the intraband
and interband Coulomb interactions are sufficiently
strong that it is adequate to describe the relative-electron
transport state using a single electron temperature Te.
Except this, the electron-electron interaction is treated
only in a mean-field level under random phase approxi-
mation (RPA) [18,19]. For the determination of unknown
parameters v0, v1, v2, and Te, it suffices to know the
damping force up to the base-frequency oscillating term
F�t� � F0 � Fs sin�!t� � Fc cos�!t�, and the energy-
related quantities up to the time-averaged term. We finally
obtain the following force and energy balance equations:

0 � NeeE0 � Nee�v0 � B� � F0; (4)

v 1 �
eEs
m!

�
Fs

Nem!
�

e
m!

�v2 � B�; (5)

�v2 �
eEc
m!

�
Fc

Nem!
�

e
m!

�v1 � B�; (6)

NeeE0  v0 � Sp �W � 0: (7)

Here

F 0 �
X
qk

jU�qk�j
2

X1
n��1

qkJ
2
n����2�qk; !0 � n!�

�
X
q

jM�q�j2
X1
n��1

qkJ
2
n����2�q; !0 ��q � n!�

(8)

is the time-averaged damping force, Sp is the time-
averaged rate of the electron energy gain from the HF
field, 1

2Nee�Es  v2 � Ec  v1�, which can be written in a
form obtained from the right-hand side of Eq. (8) by
replacing the qk factor with n!, and W is the time-
averaged rate of the electron energy loss due to coupling
with phonons, whose expression can be obtained from the
second term on the right-hand side of Eq. (8) by replacing
the qk factor with �q, the energy of a wave vector q
phonon. The oscillating frictional force amplitudes Fs �
F22 � F11 and Fc � F21 � F12 are given by (" � 1; 2)
226805-2
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F1" ��
X
qk

qk#"jU�qk�j
2

X1
n��1

�J2n����
0�1�qk; !0 � n!� �

X
q

qk#"jM�q�j2
X1
n��1

�J2n����
0�1�q; !0 ��q � n!�;

F2" �
X
qk

qk

#"
�

jU�qk�j
2

X1
n��1

2nJ2n����2�qk; !0 � n!� �
X
q

qk

#"
�

jM�q�j2
X1
n��1

2nJ2n����2�q; !0 ��q � n!�:
In these expressions, #" � qk  v"=!�; !0 � qk  v0;
U�qk� and M�q� stand for effective impurity and phonon
scattering potentials, �2�qk;�� and �2�q;�� �
2�2�qk;���n��q=T� � n��=Te�� [with n�x� � 1=
�ex � 1�] are the imaginary parts of the electron density
correlation function and electron-phonon correlation
function in the presence of the magnetic field. �1�qk;��
and �1�q;�� are the real parts of these two correlation
functions. The effect of interparticle Coulomb interac-
tions is included in them to the degree of level broadening
and RPA screening.

The HF field enters through the argument � of the
Bessel functions in F0, F"$, W, and Sp. Compared with
that without the HF field (n � 0 term only) [20], we see
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that in an electron gas having impurity and/or phonon
scattering (otherwise homogeneous), a HF field of
frequency ! opens additional channels for electron
transition: An electron in a state can absorb or emit
one or several photons and is scattered to a different
state with the help of impurities and/or phonons.
The sum over jnj � 1 represents contributions of single
and multiple photon processes of frequency-! photons.
These photon-assisted scatterings help to transfer energy
from the HF field to the electron system (Sp) and give rise
to additional damping force on the moving electrons.
Note that v1 and v2 always exhibit CR in the range !�
!c � eB=m, as can be seen from Eqs. (5) and (6) rewrit-
ten in the form
v 1 � �1�!2
c=!2��1

�
e
m!

�
Es �

e
m!

�Ec �B�
�
�

1

Nem!

�
Fs �

e
m!

�Fc � B�
�	
; (9)

v 2 � �!2
c=!2 � 1��1

�
e
m!

�
Ec �

e
m!

�Es �B�
�
�

1

Nem!

�
Fc �

e
m!

�Fs � B�
�	
: (10)
Therefore, � may be significantly different from the argu-
ment of the corresponding Bessel functions in the case
without a magnetic field or with a magnetic field in the
Voigt configuration [20].

Equations (4)–(7) can be used to describe the transport
and optical properties of magnetically biased quasi-2D
semiconductors subject to a dc field and a HF field. Taking
v0 � �v0x; 0; 0� in the x direction, Eq. (4) yields trans-
verse resistivity Rxy � E0y=Neev0x � B=Nee, and longi-
tudinal resistivity Rxx � E0x=Neev0x � �F0=N

2
ee

2v0x.
The linear magnetoresistivity is then

Rxx ��
X
qk

q2x
jU�qk�j

2

N2
ee

2

X1
n��1

J2n���
@�2

@�








��n!

�
X
q

q2x
jM�q�j2

N2
ee2

X1
n��1

J2n���
@�2

@�








���q�n!
: (11)

The parameters v1, v2, and Te in (11) should be deter-
mined by solving Eqs. (5)–(7) with a vanishing v0.

We calculate the unscreened �2�qk;�� function of the
2D system in a magnetic field by means of Landau
representation [17]:

�2�qk;�� �
1

2)l2B

X
n;n0
Cn;n0 �l

2
Bq

2
k
=2��2�n; n

0;��; (12)

�2�n; n
0;�� � �

2

)

Z
d"�f�"� � f�"����

� ImGn�"��� ImGn0 �"�; (13)
where lB �
��������������
1=jeBj

p
is the magnetic length, Cn;n�l�Y� �

n!��n� l�!��1Yle�Y�Lln�Y��2 with Lln�Y� the associate
Laguerre polynomial, f�"� � fexp��"�"�=Te� � 1g�1

the Fermi distribution function, and ImGn�"� is the
imaginary part of the Green’s function, or the DOS, of
the Landau level n. The real part functions �1�qk;�� and
�1�qk;�� can be obtained from their imaginary parts via
the Kramers-Kronig relation.

We model the DOS function with a Gaussian-type form
("n is the energy of the nth Landau level) [21]:

ImGn�"� � ��)=2�1=2��1 exp���"� "n�
2=�2�2��;

(14)

with a broadening parameter � � �2e!c1=)m"0�
1=2,

where "0 is the linear mobility at temperature T in the
absence of the magnetic field and 1 > 1 is a semiempiri-
cal parameter to take account of the difference of the
transport scattering time determining the mobility "0,
from the single particle lifetime [4,8,10].

The moderate microwave intensity for the Rxx oscilla-
tion in these high-mobility samples yields only a slight
electron heating, which is unimportant as far as the main
phenomenon is concerned and is neglected for simplicity.
We consider scatterings from remote impurities as well as
from acoustic phonons. After solving v1 and v2 from
Eqs. (9) and (10), the magnetoresisivity Rxx can be ob-
tained directly from Eq. (11). At lattice temperature
T � 1 K, the contribution from photon-assisted phonon
226805-3
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FIG. 1. The longitudinal magnetoresistivity Rxx of a GaAs-
based 2DEG subject to a linearly polarized HF field Es sin�!t�.
The parameters are temperature T � 1 K, electron density
Ne � 3:0� 1011 cm�2, zero-magnetic-field linear mobility
"0 � 2:4� 107 cm2 V�1 s�1, and the coefficient 1 � 12.
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scattering is minor. The role of acoustic phonons, how-
ever, becomes essential at elevated lattice temperatures.
Calculations were carried out for linearly polarized MW
fields with multiphoton processes included.

Figure 1 shows the calculated longitudinal resistivity
Rxx versus !=!c � 3c subject to a linearly polarized
MW radiation of frequency !=2) � 100 GHz at four
values of amplitude: Es � 20, 45, 65, and 80 V=cm.
Shubnikov–de Haas (SdH) oscillations show up strongly
at the high !c side, and gradually decay away as 1=!c
increases. All resistivity curves exhibit pronounced oscil-
lation having main oscillation period 3c � 1 (they are
crossing at points 3c � integer). The resistivity maxima
locate around 3c � j� 	� and minima around 3c � j�
	� with 	� � 0:23–0:25 for j � 3, 4, 5, 	� � 0:17–0:21
for j � 2, and even smaller 	� for j � 1. The magnitude
of the oscillation increases with increasing HF field in-
tensity for 3c > 1:5. Resistivity gets into a negative value
for Es � 80 V=cm around the minima at j � 1, 2, and 3,
for Es � 65 V=cm at j � 1 and 2, and for Es � 20 and
45 V=cm at j � 1. All these features, which are in fairly
good agreement with experimental findings [1,3–5], are
relevant mainly to single-photon (jnj � 1) processes. An
anomaly appears in the vicinity of 3c � 1, where the CR
greatly enhances the effective amplitude of the HF field
in photon-assisted scatterings and multiphoton processes
show up. The amplitudes of the j � 1 maximum and
minimum no longer monotonically change with field
intensity. Furthermore, a shoulder appears around 3c �
1:5 on the curves of Es � 45 and 65 V=cm, and it devel-
226805-4
ops into a secondary peak in the Es � 80 V=cm case.
This has already been seen in experiment (Fig. 2 of
Ref. [5]). The valley between 3c � 1:4 and 1.8 peaks
can descend down to negative as Es increasing further
[Fig. 1(b)]. The appearance of the secondary peak is due
to two-photon (jnj � 2) processes.

Radiation-induced resistivity behavior at 3c < 1 is
shown more clearly in the !=2) � 60 GHz case. As
seen in Fig. 1(c), a shoulder around 3c � 0:4–0:6 with a
minimum at 3c � 0:6 can be identified from the SdH
oscillation background for all three curves, which is
related to two-photon process. With increasing MW
strength, there appear a clear peak around 3c � 0:68
and a valley around 3c � 0:76. This peak-valley is
mainly due to three-photon (jnj � 3) process. In the
case of 40 GHz, a similar peak and valley also show up
[Fig. 1(d)].

We have also performed calculation using a Lorentz-
type DOS function and find that, although the oscillating
amplitude and the exact peak and valley positions are
somewhat different, the basic feature of the radiation-
induced magnetoresistivity oscillation remains.
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