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While standard scaling arguments show that a system of noninteracting electrons in two dimensions
and in the presence of uncorrelated disorder is insulating, in this paper we discuss the case where
interimpurity correlations are included. We find that for pointlike impurities and an infinite interim-
purity correlation length, a mobility edge exists in 2D even if the individual impurity potentials are
random. In the uncorrelated system we recover the scaling results, while in the intermediate regime for
length scales comparable to the correlation length, the system behaves like a metal but with increasing
fluctuations, before strong localization eventually takes over for length scales much larger than the
correlation length. In the intermediate regime, the relevant length scale is given by the interimpurity
correlation length, with important consequences for high mobility systems.
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T dependence of the resistance [7–9] down to the lowest
experimental T. In metallic, we understand a positive or

as  n;m 	 cos
n�=2�e , corresponding to E 	 2 cos
k�.
Clearly, this is a fully extended state. The same result
It is generally believed that a noninteracting two di-
mensional (2D) system in the presence of disorder is
always insulating. This result is based on extensive work
on scaling theory pioneered by the ‘‘gang of four’’ [1].
It has also received a considerable amount of numerical
support [2]. The general statement can be summarized as
follows. In scaling theory the localization length in 2D is
given by Lc ’ �e�kF�=2 [3], where � is the elastic scatter-
ing length. Hence, as soon as � is finite, the localization
length is finite. However, because � appears in the ex-
ponent, when kF�� 1, the localization length can be
extremely large and difficult to probe experimentally.
In the standard Born approximation any nonzero impu-
rity concentration, nI, would lead to a finite Lc, since in
this approximation ��1 � nI. Moreover, at zero tempera-
ture a finite localization length implies that the resistance
diverges exponentially for a system size exceeding the
localization length. Equivalently, for an infinite system,
the resistance diverges when the temperature T tends to
zero because the phase coherence length l
 is infinite at
zero T.

When considering discrete models based on Anderson’s
disordered tight-binding model very similar results are
obtained. All states are localized for any strength of
disorder [4]. These results apply only if all sites are
uncorrelated. Indeed, even in 1D there exist special long
and short range correlations in the disorder, which can
lead to the existence of extended states in these systems
[5]. Similarly special systems can also be found in 2D
[6]. The exact conditions under which these localization
conditions apply has recently gained considerable inter-
est because 2D electronic systems confined in a variety
of semiconducting structures, such as Si-(MOSFET)
(metal-oxide-semiconductor field-effect transistor) and
p-type GaAs=AlGaAs, have shown a strong metalliclike
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vanishing derivative of the resistivity as a function of the
temperature, i.e., @�=@T � 0.

Because in these systems disorder is always present,
which is expected to lead to localization, most of the
recent theories have considered interactions between
electrons [10] as a possible mechanism for the metallic
behavior. In this work, we instead consider the case of
correlations between impurities as a mechanism for de-
localization. Indeed, in very high mobility 2D electronic
systems such as GaAs based materials, the mobility is
generally believed to be limited by background or by
remote impurity scattering. Moreover, the mobility is
enhanced when correlations between impurities are taken
into account and this effect becomes more important at
low electronic densities [11]. Hence, it is important to
consider that the disorder in these low density and high
mobility samples is dominated by correlated impurities.
We show that these correlations can lead to a genuine
metal-insulator transition for an infinite interimpurity
correlation length l! 1 for the noninteracting 2D dis-
ordered system (with random potentials). Moreover, for a
finite l, the crossover to localization is determined by l
and not �.

We start by considering the standard disordered tight-
binding Anderson model in 2D:

 n�1;m �  n�1;m �  n;m�1 �  n;m�1 	 
E� Vn;m� n;m:

(1)

When Vn;m 	 0 we recover the free particle case with
solutions of the type  n;m 	 eikneipm and eigenvalues E 	
2 cos
k� � 2 cos
p�. When Vn;m is random and uncorre-
lated, scaling theory predicts that all states are localized
for any disorder strength. But when defining V2n;m 	 0
and V2n�1;m as random, we can write a solution to Eq. (1)
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holds in 1D but for a single energy [12]. The main differ-
ence in the 2D case compared to 1D is the existence of a
band of extended states for �2 � E � 2. For every energy
in this band there is exactly one wave function, which can
be written in this form, hence there is no degeneracy.
Therefore, when evaluating the two-terminal conduc-
tance of the system one obtains G 	 2e2=h for �2 �
EF � 2 and G 	 0 otherwise, since all other states are
localized. This gives rise to a band of extended states
around the band center and leads to a metal-insulator
transition when the Fermi energy crosses E 	 �2 and
E 	 2, which is very similar to the 3D Anderson model.
Similarly, when only the Van;m’s are random, but all other
potentials are zero, the system has conductance steps at
E 	 
2� 2 cos
l�=a�, with l 	 1; 2; 3; . . . ; a� 1 and a
an integer a � 2. We have evaluated the conduc-
tance numerically as a function of the Fermi energy and
the results are presented in Fig. 1. In order to calculate the
temperature dependence of the conductance we sim-
ply used G
T� 	

R
dEf0T
E� EF�G
E�, where fT is the

Fermi-Dirac distribution function. For noninteracting
electrons this is the dominant temperature dependence
since inelastic scattering is strongly suppressed at low
temperatures. Moreover, because EF is equivalent to the
density, this system exhibits a genuine metal-insulator
transition as a function of density.

The continuous case can be treated in an analogous
way by considering � impurities with random amplitudes
on a lattice, which is similar to the 1D case discussed in
Ref. [13]. In this case the random potential is V
x; y� 	P
n;mVn;m
y��
na� x��
ma� y�, where Vn;m are random.

The special energies for the conductance steps are now
given by E 	 n2 
h2�2=2ma2, where a is the correspond-
ing lattice constant of the random impurities, m the
effective mass, and n 	 1; 2; . . . . The corresponding
conducting wave functions (extended states) are simply
given by  
x; y� 	 sin
n�x=a�eiky for E 	 �n2 �

ka=��2� 
h2�2=2ma2. In the inset of Fig. 2 the zero tem-
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FIG. 1 (color online). Fermi energy dependence of the two-
terminal conductance with V4n;m random and all others zero.
The results are obtained from the tight-binding Hamiltonian
and for different temperatures.
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perature conductance, G, is shown as a function of the
Fermi energy.

The temperature dependence is shown for different
values of EF in Fig. 2. Hence, in this simple model in
which � impurities are on a lattice with random ampli-
tudes, we have a EF induced metal-insulator transition at
EC 	 
h2�2=2ma2, independent of the disorder strength.
This is generic for pointlike impurities on a lattice, and
Azbel used a similar model but with impurity D-function
potentials on a lattice, which also exhibits a mobility
edge at EC [14]. We obtained the temperature depen-
dence by using the Fermi-Dirac distribution R�1 	R
dEf0T
E� EF�G
E�. It is quite striking to note that

the overall shapes of the curves are very similar to the
experimental ones in high mobility 2D systems [8]. The
temperature scale in these experiments is typically close
to the Fermi temperature TF, which is of the order of 1 K
and very similar to the relevant scale in our simple model.

In the above discussion we considered the two-terminal
conductance of the system. Experimentally, this is the
quantity which is normally measured. However, in order
to neglect the contact resistance, four-terminal measure-
ments are typically performed, but at zero magnetic field
this is equivalent to a two-terminal measurement assum-
ing zero contact resistance. In addition, in 2D the value of
the conductance is converted to conductivity by taking
into account the geometry of the sample. Hence the con-
ductivity in our case would be # 	 G=square. It is inter-
esting to note that the conductance of our model does not
depend on the geometry of the sample. At first, this does
not seem physical, but since an isotropic experimental
system has a finite l
 at nonzero T equal in every direc-
tion, the relevant geometry for comparison with experi-
ments is a square; hence # 	 G. Indeed, we could model
the experimental system as a network of quantum
coherent squares coupled classically and we would
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FIG. 2 (color online). Temperature dependence of the two-
terminal resistance for various values of EF. The inset shows
the zero temperature dependence of the conductance as a
function of EF and the dotted line illustrates the overall square
root dependence of the conductance steps.
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recover # 	 G, where the value of the critical conductiv-
ity does not depend on the geometry.

Experimentally, a large applied parallel magnetic field
tends to exponentially increase the resistivity in low
density GaAs based systems [15]. In a noninteracting
picture a parallel field would simply shift the two spin
subbands and therefore not significantly alter the overall
behavior, although it could decrease the critical transition
density. However, when comparing to experimental sys-
tems in a parallel field other effects become very impor-
tant too. For instance, the 2D plane is not entirely flat
because there are micron sized in-plane deviations, which
are of the order of 4 to 30 nm high vertically [16], which
can allow random fluxes to penetrate the 2D system and
induce additional localization. These effects are beyond
the scope of this work and will not be considered further.

Coming back to our model, where the disorder is con-
fined to a regular lattice, we could show that there is a
well-defined metal-insulator transition, very similar to
the experimental situation. We now turn to the more
general case of finite l. We start by considering the case,
where the impurities are uncorrelated l 	 0 and where the
density of impurities is low before we turn to the more
general case of arbitrary l.

For the numerical calculation we considered the tight-
binding equation (1) with finite extent L in the n direction
and infinite in m. Without disorder we have plane wave
solutions of the type  
p�

n;m 	 sin
np�=L�eikm, with E 	
2 cos
p�=L� � 2 cos
k�. This system can be viewed as a
quasi-1D quantum wire, where the degeneracy of states
depends on L and E and the conductance is simply 2e2=h
multiplied by the degeneracy. In the middle of this system
we now add NI punctual impurities in a rectangle of size

width 	 L� � 
length 	 L�. For the contact region we
use a much larger width than the disordered region,
which does not affect the overall dependence of the
conductance. This model is illustrated in Fig. 3, where
the source and drain region has no disorder and is much
wider (width 	 384) than the disordered region. We
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FIG. 3 (color online). The conductivity as a function of the
number of impurities for different sizes and values of the
impurity potential, with �0:5< V1 < 0:5, �1< V2 < 1, and
V3 	 1.
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evaluated numerically the conductance of the system
using standard transfer matrix techniques and show the
conductance as a function of the number of impurities
for different sizes of the disordered region in Fig. 3. In
our model we used a square geometry L� L, which has
the particularity that at the band center the conductance
G is independent of L for V 	 0 and # 	 G. The curves
were obtained by averaging over ten different disorder
configurations.

Figure 3 clearly shows that # depends only on the
number of impurities and not on the size of the system.
Hence the dependence is simply #
NI� 	 #
L2nI�. This
dependence holds for the entire range until # saturates to
the value where nI ’ 1. At a large enough number of
impurities and in the strong localization regime we
have an excellent fit to the expression #
NI� � e�%

����
NI

p

�
e�%

����
nI

p
L, where % depends only on the impurity strength

and L�1
c 	 %

�����
nI

p
. The quality of the fit and the simplicity

of the fitting expression is quite remarkable. This result
also implies that for any nonzero uncorrelated impurity
density the system is always insulating, which is consis-
tent with the scaling analysis.

However, when the impurities are distributed on a
lattice, i.e., l 	 1, as in Fig. 1, we also obtain a universal
dependence only on NI independent of L, i.e., #
NI�. The
result is shown in Fig. 4. The only difference here is that
#
NI ! 1� 	 2e2=h instead of zero. For this data set we
considered that only every second site is random, which
in this case leads to a metallic conductance of 2e2=h at the
band center. This data set was obtained without averaging
over different disorder configurations and each data point
represents an independent impurity configuration.

We now consider the most interesting case, where we
change the interimpurity correlation length l. The results
in Fig. 5 illustrate three cases (l 	 0, l � 0, l 	 1) for a
fixed system size L since # does not depend explicitly on
L but only on NI. In order to vary l we chose to introduce
two types of impuritiesNcorr

I andNuncorr
I andNI 	 Ncorr

I �
Nuncorr
I . The Ncorr

I impurities will fall randomly on the
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FIG. 4 (color online). The conductivity as a function of the
number of impurities for different sizes and for �1< V2 < 1.
Here only every second site is disordered.
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FIG. 5 (color online). The conductivity as a function of the
number of impurities for different ratios of correlated to un-
correlated impurities. The straight line is the fit #�
exp
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I � and the dotted line corresponds to the intermedi-
ate case.
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lattice (of spacing 4 for Fig. 5), whereas the Nuncorr
I impu-

rities are not correlated to any site. The correlation length
is therefore determined by the density of uncorrelated
impurities l2 	 L2=Nuncorr

I .
Overall, the conductivity remains metallic for length

scales comparable to the correlation length and the con-
ductance fluctuations are close to zero in this metallic
regime. For length scales exceeding the correlation
length we first have increasing conductance fluctuations
before the system eventually localizes at large enough
length scales L� l with a localization length equal to
the uncorrelated case. The fluctuations in the intermediate
regime are much larger than for the uncorrelated system
and constitute an important signature of the correlation
in the ‘‘metalliclike’’ state. Interestingly, a very similar
enhancement of the conductance fluctuations is seen close
to the transition from the metallic to insulating behavior
in Si-MOSFET and GaAs systems [17]. In our model of
correlated impurities it is therefore the interimpurity
correlation length l, which controls the range of metallic
behavior and not the semiclassical elastic scattering
length �, which can be much smaller than l. Hence, a
large l can significantly enhance the range of metallic
behavior in 2D, which constitutes one of the main results
of this Letter. This is in stark contrast to the case where
the impurity range is increased, which is appropriate to
describe experimental systems because charged impuri-
ties are screened by electrons. In this case it was shown
that a larger impurity range enhances localization if
impurities remain uncorrelated [18]. However, the situ-
ation with correlated impurities was not considered.
Hence, this shows that interimpurity correlations sup-
press localization whereas large impurity ranges en-
hance localization. In an applied perpendicular magnetic
field, it was recently shown that a long-range disorder po-
tential might induce a metal-insulator transition [19] too.
226403-4
Clearly, correlations between impurities have a signifi-
cant impact on the localization properties and have to be
considered when comparing to experimental systems
along with electron-electron interactions.

In conclusion, we have analyzed the impact of interim-
purity correlations on the localization properties of a
noninteracting 2D electronic system. For impurities on
a lattice and with random potentials, corresponding to an
infinite interimpurity correlation length, the system ex-
hibits a true metal-insulator transition. A finite correla-
tion length enhances the scale over which the system is
conducting before the system is eventually localized. A
large correlation length can explain the large conduc-
tance fluctuations and metallic behavior of experimen-
tal systems. We also showed that the conductivity is only
a function of the number of impurities, NI, and that the
localization length is given by Lc � N�1=2

I for L� l.
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