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Mott Transitions in Multiorbital Systems
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Using the dynamical mean field theory it is shown that interorbital Coulomb interactions in
nonisotropic multiorbital materials give rise to a single Mott transition. Nevertheless, narrow and
wide subbands exhibit different excitation spectra in the metallic and insulating phases. The close
analogy between ‘‘multigap’’ insulating behavior and multigap superconductivity is pointed out.
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A hallmark of strongly correlated materials is their
geometrical, electronic, and magnetic complexity [1].
Among the fascinating phenomena observed in these
systems are metal-insulator transitions caused by local
Coulomb interactions [2]. Valence bands of Mott insula-
tors are mostly derived from oriented electronic orbitals
whose degeneracy usually is lifted by the crystal field,
giving rise to a variety of highly anisotropic properties.
For instance, the layer-perovskite Sr2RuO4 consists of a
wide, two-dimensional dxy band and narrow, nearly one-
dimensional dxz;yz bands [3,4]. This system exhibits
unconventional p-wave superconductivity [5], but iso-
electronic replacement of Sr by Ca induces a Mott tran-
sition to an antiferromagnetic insulator [6]. Similar
splittings into nonequivalent subbands occur in the clas-
sic Mott insulators VO2 [7,8] and V2O3 [9,10], in layered
organic superconductors [11], fullerenes [12], and many
other compounds [1].

The nature of the paramagnetic metal-insulator tran-
sition in a multiband environment involving subbands of
different widths is not yet understood. In particular, it is
not clear whether all bands undergo a common transition
at the same critical Coulomb energy, or whether narrow
and wide subbands generate transitions at successive
critical Coulomb energies. While local Coulomb in-
teractions in multiband materials have been investi-
gated previously [13–20], most studies treated the special
‘‘isotropic’’ case of identical orbitals where the question
of one or several Mott transitions does not arise. Here
we consider the ‘‘nonisotropic’’ case where the multi-
band system consists of nonequivalent subbands which
is the usual situation in typical Mott insulators. In the
absence of interorbital Coulomb interactions, and in the
case of negligible hybridization, these bands would ex-
hibit metal-insulator transitions at different critical en-
ergies Uci.

Using the dynamical mean field theory [21], we show
that the consequence of interorbital Coulomb interactions
is to enforce a single Mott transition, implying all sub-
bands to be either metallic or insulating. The critical
Coulomb energyUc of the interacting system lies between
the U of the isolated subbands. Thus, narrow subbands
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than in the absence of interorbital Coulomb interactions.
Coexistence of metallic and insulating behavior in differ-
ent subbands does not occur. On the other hand, in
the joint metallic region narrow and wide subbands
reveal excitation spectra with varying correlation signa-
tures. Moreover, the insulating phase exhibits a ‘‘multi-
gap’’ spectrum, i.e., the subbands show different
excitation gaps and Hubbard bands.

This novel picture for multiband Mott insulators is
remarkably similar to the ‘‘orbital-dependent’’ super-
conductivity observed in the quasi-two-dimensional
compounds Sr2RuO4 [5] and MgB2 [22–25]. In the latter
case, the intra- and interplanar electronic orbitals couple
to anisotropic phonon modes and lead to different super-
conducting order parameters. Nevertheless, the weak hy-
bridization interaction between the
- and�-type orbitals
ensures that this multigap material exhibits a single tran-
sition, i.e., both excitation gaps vanish at the same critical
temperature.

Let us consider the paramagnetic metal-insulator tran-
sition in a two-band Hubbard model with narrow and
wide subbands. These might represent, for instance, the
t2g orbitals of a layer-perovskite material or of VO2.
Hybridization between subbands is assumed to be small,
e.g., for symmetry reasons. For illustrative purposes these
bands are assumed to be half filled and to have elliptical
densities of states �i�!� of widths W1 � 2 eV and W2 �
4 eV. Single-band systems of this type have been inves-
tigated extensively in the past and their metal-insulator
transitions are well understood [26]. To account for local
Coulomb correlations we use the dynamical mean field
theory (DMFT) in combination with the multiorbital
quantum Monte Carlo (QMC) method [21]. The quantum
impurity problem is solved at finite temperature T
for various intra- and interorbital Coulomb energies U
and U0 � U� 2J, where J is the Hund’s rule exchange
integral.

Two criteria are employed to determine the stability of
the Fermi liquid state as a function of the on-site
Coulomb energy. First, we calculate the subband quasi-
particle weights
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where the derivative of the real part of the self-energy
�i�!� is approximated by Im�i�i!0�=!0 with !0 �
�=� � �kBT being the first Matsubara frequency. 1=Zi
defines the effective mass ratio of the ith subband and 1�
Zi provides the correlation induced transfer of spectral
weight from the coherent peak at the Fermi level to
the incoherent Hubbard bands. The second criterion is
obtained from the imaginary-time Green’s functions at
� � �=2:

Gi��=2� � ��1
Z
d!F�!�ImGi�!�; (2)

where F�!� � 0:5=cosh��!=2� is a distribution of width
w � 4ln�2	

���
3

p
�=� centered about the Fermi level.

While Zi specifies the quasiparticle weight of the ith
subband right at EF, Gi��=2� represents the integrated
spectral weight within a few kBT of EF, i.e., it includes
the low-lying excitations. Below we present normalized
quantities �GGi��=2� � Gi��=2�=G

U�0
i ��=2� so that Zi �

�GGi��=2� � 1 in the noninteracting limit. Studying these
criteria is convenient since �i�i!n� and Gi��� follow
directly from the QMC calculation. Thus, Zi and
�GGi��=2� are available without having to evaluate the

real-frequency spectral distributions ImGi�!�.
Figure 1 shows the variation of Zi and �GGi��=2� as a

function of U for T � 125 meV. The exchange integral is
J � 0:2 eV [27]. Evidently the quasiparticle weights near
EF diminish as a result of Coulomb correlations. At a
given U, however, Z1 and �GG1��=2� in the nonisotropic
W1; W2 system are larger than in the isotropic W1; W1

case. Thus, as a result of interorbital interactions the
narrow subband is less correlated than in the degenerate
two-band system. Similarly, Z2 and �GG2��=2� in the
W1; W2 model are smaller than in the W2;W2 case, i.e.,
interorbital interactions make the wide subband less me-
tallic than in the isotropic two-band system.

Since �GGi��=2� represents the spectral weight within
several kBT of EF its reduction at small U is weaker than
that of Zi, while in the critical regions its decay is more
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FIG. 1. (a) Quasiparticle weights Zi and (b) integrated spectral w
energy U for T > 0. Solid symbols: isotropicW1; W1 andW2;W2 sy
extrapolation of Zi and �GGi��=2� to estimate critical Coulomb energ
indicates the existence of a single Mott transition in the nonisotro
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abrupt. Close to the metal-insulator transitions Zi and
�GGi��=2� show a characteristic rounding off caused by

the finite temperature and critical slowing down. Within
this uncertainty Zi and �GGi��=2� yield consistent critical
Coulomb energies: Uc1 � 3:0 eV for the narrow two-
band system, Uc2 � 6:1 eV for the wide two-band sys-
tem, and Uc � 4:8 eV for the mixed system [28].

The key point of these results is the fact that the system
involving narrow and wide subbands exhibits a single
Mott transition at an intermediate Uc such that Uc1 <
Uc < Uc2. There is no evidence for coexisting insulating
and metallic subbands. All bands are either metallic or
insulating [29]. At small U correlations reduce the qua-
siparticle weight in the narrow subband much more rap-
idly than in the wide band. For U > Uc=2, however, Z1
and Z2 begin to converge again and decrease to zero
spectral weight at the same Uc. The same behavior is
shown by the integrated weights �GGi��=2�. Since Z1 < Z2
and �GG1 < �GG2 the narrow band is always more strongly
correlated than the wider counterpart. Analogously, the
insulating phase exhibits two excitation gaps (see below).

The picture of a common Mott transition in a non-
isotropic multiorbital environment is consistent with the
general mean field theory of phase transitions in interact-
ing subsystems [30]. It confirms our preliminary results
for Ca2�xSrxRuO4 [31]. These results were not entirely
conclusive due to uncertainties associated with the maxi-
mum entropy [32] reconstruction of real-frequency spec-
tral distributions from the QMC imaginary-time Green’s
functions. Here we avoid these difficulties by investigat-
ing more reliable criteria for the stability of the Fermi
liquid state directly within imaginary time/frequency
space. Also, by varying the Coulomb energy over a
wide range, the evolution from noninteracting to strongly
interacting subbands is clearly revealed. The present pic-
ture does not support the ‘‘orbital-selective’’ Mott tran-
sitions obtained for Ca2�xSrxRuO4 by Anisimov et al.
[19] nor the ‘‘two-fluid’’ metal-insulator scenario for
VO2 found by Laad et al. [33]. At present the origin of
these differences is not known [34].
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eights �GGi��=2� of two-band systems as a function of Coulomb
stems; open symbols: nonisotropicW1;W2 system. Dotted lines:
ies. The convergence of the dashed lines towards increasing U

pic two-band system.
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FIG. 2. Quasiparticle weights Zi of two-band systems as a
function of Coulomb energy U for T � 0. Solid curves: iso-
tropic W1; W1 andW2; W2 systems; dashed curves: nonisotropic
W1; W2 system. Dotted lines: extrapolation of Zi to estimate
critical Coulomb energies. As in Fig. 1, the convergence of the
dashed lines towards increasing U signifies the existence of a
single Mott transition in the nonisotropic two-band system.
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Multiband QMC calculations at lower temperatures
(T � 62 and 31 meV) confirm the picture discussed above.
To verify that the main conclusion holds also in the low
temperature limit we have performed analogous two-
band calculations at T � 0 within the self-consistent
iterated perturbation theory (IPT) [35], where the self-
energy is calculated at real frequencies within the
second-order perturbation theory. As shown in Fig. 2,
the behavior of the quasiparticle weights at T � 0 is
consistent with the scenario for T > 0: The isotropic
two-band systems have widely different critical
Coulomb energies, Uc1 � 2:3 eV and Uc2 � 4:3 eV. In
contrast, the nonisotropic system undergoes a Mott tran-
sition at Uc � 3:2 eV [36].

Although interorbital Coulomb interactions lead to a
common metal-insulator transition in the narrow and
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FIG. 3. Quasiparticle spectra of nonisotropic two-band system f
phase. The solid and dashed curves denote the spectra of the narrow
represented by the dot-dashed curves. In the metallic phase, both
different incoherent peaks. In the insulating phase, they show diff

226401-3
wide subbands, their excitation spectra differ qualita-
tively both in the metallic and insulating phases. This is
illustrated in Fig. 3 which shows quasiparticle distribu-
tions derived using the maximum entropy method [32].
For U <Uc both bands are metallic. The narrow band
spectrum N1�!�, however, is more strongly correlated
than the wide band spectrum N2�!�: The spectral weight
at EF is greatly reduced and the Hubbard peaks are more
pronounced. In the absence of interorbital Coulomb inter-
actions, N1�!� would exhibit a gap whereas N2�!� would
be much less correlated than the spectral distribution
shown in Fig. 3(a). ForU > Uc we find that the insulating
phase is multigapped: both subbands exhibit excitation
gaps, but the gap of the narrow band is larger than that of
the wide band. In the absence of interorbital interactions
the gap in N1�!� would be even larger, while according to
Fig. 1 for U � 6 eV, N2�!� would be close to the metal-
insulator transition.

For illustrative purposes we have studied the case of
half-filled, symmetric subbands. The consistency of the
picture discussed here with that for Ca2�xSrxRuO4 [31]
suggests that the same conclusion holds more generally
for nonsymmetric multiband systems.

Our results provide new insight into the nature of Mott
transitions in multiorbital systems. Several predictions
can be tested using angle resolved photoemission and
optical spectroscopy. In the metallic phase, the subbands
should exhibit coherent peaks of different spectral
weights and different incoherent satellite features. At
the transition the coherent peaks should vanish simulta-
neously. In the insulating phase, the subbands should
exhibit different excitation gaps and Hubbard bands.
The gaps should close simultaneously upon approaching
the transition.

In summary, we have studied the effect of interorbital
Coulomb interactions on the metal-insulator transition of
nonisotropic multiband materials. Using the dynamical
mean field theory we have shown that narrow and wide
subbands exhibit a common Mott transition rather than a
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or T � 125 meV (EF � 0): (a) metallic phase, (b) insulating
and wide subbands, respectively. The bare densities of states are

subbands exhibit different spectral weight near EF � 0 and
erent excitation gaps.
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sequence of transitions. In practice, hybridization be-
tween subbands should also contribute to the occurrence
of a single transition. In SrxRuO4, for instance, replacing
Sr by Ca leads to distortions of oxygen octahedra and to
coupling between Ru t2g bands. Hybridization occurs also
between V t2g orbitals in VO2 and V2O3. The sharp
resistivity jumps observed in many Mott insulators pro-
vide experimental evidence for the correctness of our
picture of a single transition in a multiband environment.
Nevertheless, it would be of interest to study the charac-
teristic multiorbital features of these materials, such as
the multigap nature of the insulating phase and the joint
disappearance of the coherent peaks on the metallic side
of the transition. These experiments should elucidate the
analogy between multigap insulating behavior and multi-
gap superconductivity.
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