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It has been stated that for a short-ranged surface interaction, the probability of a low-energy particle
sticking to a surface always vanishes as s� kwith k! 0 where k �

����
E

p
. Deviations from this so-called

universal threshold law are derived using a linear model of particle-surface scattering. The Fredholm
theory of integral equations is used to find the global conditions necessary for a convergent solution. The
exceptional case of a zero-energy resonance is considered in detail. Anomalous threshold laws, where
s� k1��; � > 0 as k! 0, are shown to arise from a soft gap in the weighted density of states of
excitations; � is determined by the behavior of the weighted density of states near the binding energy.
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H I � 	�
i

Wi�ai � ai�F�z�; (4) duction of the outgoing Green’s function Gi � �k 	
H p 	!i � i��	1.
It has been previously established, both theoretically
[1–7] and experimentally [8], that at sufficiently low
incident energy E, the probability of a neutral particle
sticking to an insulating substrate vanishes as s� k with
k! 0 (k �

����
E

p
). It has been asserted [9] that this thresh-

old law is independent of the details of the theoretical
model and is thus universal.

It is demonstrated that by using a generalization of a
linear model of particle-surface scattering previously
considered [3], anomalous threshold laws where s�
k1��; � > 0 as k! 0 are possible. These anomalous
laws arise with the presence of a soft gap in the weighted
density of states of excitations at the binding energy
of the particle in the static surface potential. Thus, the
many-body details of the model can indeed alter the
threshold law.

The model is analyzed using the Fredholm theory of
integral equations. There are two advantages of this ap-
proach: (1) rigorous conditions on the validity of the
solution can be obtained, and (2) the solution is known
to be convergent for all coupling strengths. A general
expression for the sticking probability is obtained in
terms of the Fredholm determinant. Fredholm theory
has been previously used in quantum scattering from a
static central potential by Jost and Pais [10]. Here, its
utility is illustrated for the case of inelastic surface
scattering.

The Hamiltonian is taken to be

H � H p �H e �H I; (1)

where

H p �
P2

2m
� V�z�; (2)

H e �
X
i

!ia
y
i ai; (3)

X
y
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where F�z� 
 V 0�z�, and H p is the Hamiltonian for
the particle moving in the static potential, V�z�. H e is
the Hamiltonian for the excitations; H I contains
the particle-excitation coupling; m is the particle mass;
!i is the frequency of the excitation in the ith mode;
Wi is a generalized mode-dependent coupling; and ayi
and ai are excitation creation and annihilation operators,
respectively.

The Hilbert space is truncated to include only single
excitation states. Thus the statistics of the excitation does
not matter here. The excitation states can be labeled by jni
where n represents the mode that is occupied. The system
wave function can be expanded as

j�i �
X
n

jnij�ni: (5)

The following coupled set of equations results

�H p 	 k2�j�0i � �
X
i

M0ij�ii; (6)

�H p 	 k2 �!i�j�ii � �Mi0j�0i; (7)

where

M0i � WiF; (8)

and where F � V0 and E � k2.
For the Green’s functions to exist for real positive

energies, it is necessary to continue the excitation ener-
gies into the lower half of the complex plane !j ! !j 	
i�. This negative imaginary part of the excitation ener-
gies corresponds physically to a reciprocal decay time
that is always present in experiment. It may be thought of
as arising from anharmonicity, disorder, or interactions
with additional degrees of freedom not explicitly con-
tained in the model.

The coupled set of equations can now be converted
into a set of coupled integral equations with the intro-
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�i�z; k� �  0�z; k��i0 � �
X
j

Z 1

0
dz0Kij�z; z

0; k��j�z
0; k�;

(9)

with the kernel Kij�z; z0; k� � 	Gi�z; z
0; k�Mij�z

0�. The
incident wave  0 is placed in the zero-excitation (or
elastic) channel, a boundary condition consistent with a
zero-temperature substrate. Normalization of  0 is chosen
to give unit flux for the incoming piece.

Such a system of integral equations can be formally
solved using Fredholm theory, provided the kernel is
sufficiently well behaved. The coordinate dependence of
M is local, and the kernel can be modified using a trans-
formation for polar kernels [11]:

Kij�z; z
0; k� � 	jF�z�j1=2Gi�z; z

0; k�Mij�z
0�jF�z0�j	1=2:

(10)

It is straightforward to show that if the following
226105-2
conditions are satisfied, such a kernel is in the Hilbert-
Schmidt class,

Z 1

0
dzznjV�z�j<1; n � 0; 1; 2; (11a)

Z 1

0
dzznjF�z�j<1; n � 0; 1; 2; (11b)

�������
Z 1

0
d!~!!�!�

1

k2 	!� i�

�������<1; (11c)

where the weighted density of states of excitations is
given by ~!!�!� � jW�!�j2!�!�, with !�!� being the
density of excitation states. The continuum limit has
been taken in Eq. (11c). These conditions insure that
TrKKy <1.

The solution of the channel wave functions is expressed
in terms of the Fredholm resolvent Rij�z; z0; k� 

�Dij�z; z0; k; ��=	�k; �� of the kernel K.
�i�z� �  0�z��i0 �
�

	�k; ��

Z
dz0jF�z�j	1=2Di0�z; z

0; k; ��jF�z0�j1=2 0�z
0; k�: (12)

Both the numerator of the resolvent Dij and the Fredholm determinant 	 can be expressed as power series expansions
in the coupling strength �. It is well known that these series expansions are absolutely convergent. Thus the Fredholm
method is well suited for investigating the strong coupling regime.

D ij�z; z
0� � Kij�z; z

0� �
X1
n�1

X
jn

�	��n

n!

Z 1

0
dz1 � � �

Z 1

0
dzn

�����������������

Kij�z; z0� Kij1�z; z1� � � � Kijn�z; zn�
Kj1j�z1; z

0� Kj1j1�z1; z1� � � � Kj1jn�z; zn�

..

.

Kjnj�zn; z
0� � � � Kjnjn�zn; zn�

�����������������
; (13)

	 � 1�
X1
n�1

X
jn

�	��n

n!

Z 1

0
dz1 � � �

Z 1

0
dzn

�������������

Kj1j1�z1; z1� Kj1j2�z1; z2� � � � Kj1jn�z1; zn�

..

.

Kjnj1�zn; z1� Kjnj2�zn; z2� � � � Kjnjn�zn; zn�

��������������
: (14)

Since M has the form of a border matrix, these series expansions are truncated. This greatly simplifies Eqs. (13) and
(14) to the following:

D i0�z; z
0; k; �� � Ki0�z; z

0; k� � ��i0
X
m

Z
dz1K0m�z; z1; k�Km0�z1; z

0; k�; (15)

XZ

	�k; �� � 1	 �2

m

dzdz0K0m�z; z
0; k�Km0�z

0; z; k�:

(16)

Elements of the S matrix can be obtained from the
asymptotic form of the exact solution.

S00 �
f�k�
f�	k�

	�	k; ��
	�k; ��

; (17a)

S0n � 	
2i�

��������
kkn

p

	�k; ��

Z
dz
u�kn; z�
f�	kn�

u�k; z�
f�	k�

WnF�z�; (17b)

where f�k� is the Jost function associated with the poten-
tial V, kn �

�����������������������������
k2 	!n � i�

p
, and u�k; z� is the regular
solution in the potential V with the condition that
u0�k; 0� � 1.

In the absence of sticking, the open-channel S matrix is
unitary. Conservation of particle flux implies that the
deviation from unitarity is the sticking probability
s�k; ��. Thus

s�k; �� � 1	
X
k2n�0

jS0nj2: (18)

The Fredholm determinant is an analytic function of k
in the upper half of the complex k plane. It is important to
note k � 0 is an exceptional point because of the possi-
bility of a zero-energy resonance in the geometry of
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surface scattering. (A centrifugal potential for ‘ � 0,
present in scattering from a point source, is absent in
the case of surface scattering.) A zero-energy resonance
in the potential V permits the Jost function to vanish at
zero energy, f�0� � 0, leading to a simple pole in the
Green’s function in the elastic channel. Poles in the in-
elastic Green’s functions Gm have been pushed off the
real axis into the lower half of the complex k plane,
with the addition of an imaginary part to the excitation
frequencies.

The Fredholm determinant can be written as

	�k; �� � 1� �2&�k�; (19)

where

&�k� � 	
Z
dzdz0F�z�F�z0�G0�z; z

0; k�I�z; z0; k� (20)

and

I �z; z0; k� 

Z 1

0
d!~!!�!�G0�z; z

0;
��������������������������
k2 	!� i�

p
�: (21)

Substitution of Eqs. (17a), (17b), and (19) into Eq. (18)
yields

s�k; �� �
�2

j	�k; ��j2
Re�2�&c�k� 	 &c�	k��

� �2�j&�k�j2 	 j&�	k�j2��; (22)

where

&c�k� � 	
Z
dzdz0F�z�F�z0�G0�z; z0; k�

�
Z 1

k2
d!~!!�!�G0�z; z0;

��������������������������
k2 	!� i�

p
�: (23)

The low-energy regime is now considered. The Green’s
function G0�z; z0; k� is analytic in the first quadrant of the
complex k plane and can be expanded as a Laurent series
about k � 0. The series terminates at a simple pole to
allow for the possibility of a zero-energy resonance [12].
Thus,

G0�z; z0; k� �
g	1�z; z

0�

k
� g0�z; z0� � g1�z; z0�k� � � � :

(24)

D �
Z
dz dz0 dz dz0F�z �F�z0 �F
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The discussion now focuses on the case where there is a
single bound state in the static potential V at energy 	)2

b
with eigenstate �b, real and normalized. With ~!! suitably
smooth,

ImI�z; z0; k� 
 I i�z; z0; k� � 	+~!!�k2 � )2
b��b�z��b�z0�;

�! 0:

(25)

Since g1 is pure imaginary, for the case where f�0� � 0
(g	1 � 0),

Re�&c�k� 	 &c�	k�� � 2+k~!!�k2 � )2b�A1; k! 0;

(26)

where

A1 �
Z
dzdz0F�z�F�z0��b�z��b�z0�Img1�z; z0�: (27)

Similarly,

&�k�&��k� 	 &�	k�&��	k� � 4+k~!!�k2 � )2b�B1;

k!0; (28)

where

B1 �
Z
dz1dz

0
1dz2dz

0
2F�z1�F�z

0
1�F�z2�F�z

0
2�g0�z1; z

0
1�

� Img1�z2; z02���b�z2��b�z02�I r�z1; z
0
1�

	�b�z1��b�z
0
1�I r�z2; z

0
2�� (29)

and I r�z; z0� � P
R
1
0 d!~!!�!�G0�z; z0; i

����
!

p
�.

Thus, the low-energy sticking probability is of the
form

s�k; �� �
4+�2�A1 � �2B1�

1� �2C0 � �4D0

k~!!�k2 � )2b�; k! 0;

(30)

where

C0 � 	2
Z
dzdz0F�z�F�z0�g0�z; z

0�I r�z; z
0�; (31)

�F�z0 �g �z ; z0 �g �z ; z0 �
0 1 1 2 2 1 1 �z2 2 0 1 1 0 2 2

� �I r�z1; z01�I r�z2; z
0
2� � +2 ~!!2�)2

b��b�z1��b�z01��b�z2��b�z02��: (32)
Under typical circumstances, ~!!�k2 � )2
b� approaches a

finite and nonzero limit as k! 0. Then the ‘‘universal’’
sticking law is recovered from Eq. (30) for the case of a
short-ranged potential, with s� k as k! 0.

Anomalous threshold laws, where s� k1�� (� > 0),
are theoretically possible for cases where the weighted
density of states has a soft gap approaching zero at the
binding energy. It is noted that a soft gap in the density of
states frequently occurs in the vicinity of a phase tran-
sition. Scattering from a substrate undergoing a low tem-
perature structural phase transition might reveal such
226105-3
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anomalous laws. The temperature of the substrate could
be used to tune the softening phonon mode. In the vicinity
of a minimum in the dispersion, a soft gap in the density
of states appears, with !�!� /

�����������������
!	!0

p
in the neighbor-

hood above the softened frequency !0. For the case of a
smooth weighting function W, nonvanishing at )2

b, � � 1
and s� k2 as k! 0.

The phonon and roton contributions to sticking have
been independently measured [13,14] for helium scatter-
ing from superfluid 4He. The roton density of states of
superfluid 4He vanishes as the energy approaches the
minimum energy to create a roton. It is known [4,15]
that the static potential can be substantially modified by
preparing a film of superfluid 4He on a substrate with a
van der Waals coefficient different from that of the 4He
film. If the depth of the binding energy is adjusted to the
roton minimum energy by using the appropriate substrate
and film thickness, then it might be possible to measure
an anomalous threshold law for sticking by roton creation.

Another possibility would be to use a substrate where
the optical phonon energy at the zone edge is equal to the
binding energy. While surface preparation could be used
to adjust the binding energy, the van Hove singularity of a
bulk optical phonon at the zone edge is insensitive to
surface perturbations and can provide the necessary soft
gap. Flatté and Kohn [16] discussed the general condi-
tions for dominance of inelastic scattering by bulk sub-
strate parameters.

Consider the case of ~!!�!� � �!	 )2
b�
� for ! � )2b

(� > 0). The sticking probability then behaves as

s�k; �� �
4+�2�A1 � �2B1�

1� �2C0 � �4D0

k1�2�; k! 0: (33)

The suppression of the weighted density of states at the
binding energy results in a decline in the sticking proba-
bility at low energies that is more rapid than would be
predicted from the universal threshold law. Under the
conditions considered, the frequency dependence of the
weighted density of states near the binding energy ap-
pears in the energy dependence of the sticking probability
near zero energy.

While a zero-energy resonance is not a true bound
state, it may be present in addition to a bound state. The
presence of the zero-energy resonance affects the energy
dependence of the elastic Green’s function and alters the
form of the sticking probability with coupling strength �.

With f�0� � 0 (g	1 � 0) and � � 0, at suitably low
energies,

s�k; �� �
4+�A	1 � �2B	1�

�2D	1

k1�2�; k! 0; (34)
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where A	1 and B	1 are obtained from Eqs. (27) and (29)
by replacing g1 ! g	1 andD	1 by replacing g0 ! Img	1

in Eq. (32). The same k dependence of the threshold laws
results as in Eq. (33); however, the dependence on cou-
pling strength differs.

Anomalous threshold laws in low-energy particle-sur-
face scattering have been shown to result from a soft gap
in the weighted density of states at the frequency equal to
the binding energy. This provides a counterexample to the
claim [9] that the universal threshold law is independent
of model details. Fredholm theory has been used to find
an exact solution together with global conditions on the
potential and inelastic coupling functions for the validity
of the solution. The solution of the model is valid for
arbitrarily large coupling strengths �. A general expres-
sion for the sticking probability in terms of the Fredholm
determinant has been derived. The exceptional case of a
zero-energy resonance is seen to affect the coupling con-
stant dependence, but not affect the energy dependence of
the sticking probability.
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