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Critical Velocity of ContinuousVortex Nucleation in a Slab of Superfluid 3He-A

P. M. Walmsley, D. J. Cousins, and A. I. Golov
Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

(Received 31 July 2003; published 24 November 2003)
225301-1
A flow-induced Fréedericksz transition is observed in a 0.26 mm thick disk-shaped slab of superfluid
3He-A using a rotating cryostat and a torsional oscillator, and it is used to detect vortices in zero
magnetic field. The phenomena are studied as a function of magnetic field normal to the slab. In defect-
free l̂l texture the critical velocity for vortex nucleation is 0:5 mm=s, but in the presence of a domain
wall it is reduced to � 	h=2mac, where ac�H� is the field-dependent radius of the vortex soft core. The
vortices nucleate at a distance at least 0.3 mm from the outer edge of the disk.
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We report reproducible measurements of critical veloc-
ities for flow-induced reversible and irreversible textural �H=HF�

2 � �v=vF�
2 � 1: (3)
Phase slips, caused by moving zeros of the order pa-
rameter in singular cores of quantized vortex lines, are
the standard mechanism of superflow decay in conven-
tional superfluids and superconductors. 3He-A is different
as there is another mechanism dissipating the energy of
flow by rotating its anisotropy axis l̂l without suppressing
the order parameter [1]. Albeit very different microscopi-
cally, this process can still be described macroscopically
as the nucleation and motion of continuous quantized
vortices. Moreover, because in 3He-A the relevant reor-
ientations occur only on length scales greater than some
10 �m (much larger in small magnetic field) from con-
tainer walls [2], the uncontrollable disorder due to the
wall roughness does not make the vortex nucleation ex-
trinsic as is the case in superfluid 4He, 3He-B, and super-
conductors. Hence, 3He-A is the best available system in
which to study the intrinsic nucleation of vortices as a
hydrodynamic instability of flow in a well-controlled
geometry. It also benefits from the existence of the micro-
scopic theory for all hydrodynamic parameters.

Magnetic field H or container walls restrain the l̂l
texture, hence stabilizing a finite value of the critical
velocity of vortex nucleation, vc. In this context, the
question whether 3He-A can sustain a finite nondissipative
flow at H � 0 in a wide channel is in fact the test of
superfluidity of 3He-A. The interaction between l̂l and flow
or other fields is hence a fundamental problem. These
interactions also lead to the possibility of creating differ-
ent metastable textures. Earlier attempts to measure vc at
H � 0 with a piston-driven flow [3] through a mm-sized
rectangular channel revealed a broad range of vc �
0:5–2 mm=s, probably caused by poor control of textures.
Continuous rotation is the only way to achieve steady flow
in 3He: this was recently employed in NMR studies of
3He-A in a long rotating cylinder [2], but only in high
magnetic field, H � 100–300 G, and without full control
of textures. They showed that the value of vc �
0:2–1:5 mm=s depends on the initial l̂l texture, and the
presence of domain walls greatly reduces vc.
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transitions in rotating 3He-A. We gain control of the
texture by placing 3He-A in a slab of thickness D. This
also imposes a length scale D which is the radius of the
soft core of continuous vortices in zero field. We then
apply magnetic field to control the vortex soft core size
and to introduce a pair of domain walls on demand. We
also describe a new vortex detection technique that is
based on the sensitivity of a torsional oscillator to reor-
ientation of l̂l caused by the counterflow surrounding the
vortex cluster and can be used in zero field.

3He-A is a fermionic superfluid [4] with the Cooper
pairs in the p-wave spin-triplet state all having their
orbital momentum locally pointing in the same direction
l̂l�r�. The spin anisotropy axis d̂d�r� tends to be aligned
with l̂l because of the dipole-dipole interaction energy
Fd � � 1

2�d�d̂d � l̂l�2. In what follows we consider this ‘‘di-
pole-locked’’ case d̂d � �l̂l and call the spatial variation of
l̂l�r� the texture.

Three competing effects orient the texture in a slab.
First, the boundaries force l̂l normal to them favoring a
uniform normal texture (NT) because tipping the l̂l vector
in the middle of the slab costs kinetic energy Fslab �
K0

bD
�2. Second, the magnetic energy in a perpendicular

field FH � 1
2 ���d̂d �H�2 favors a uniform planar texture

(PT) parallel to the walls; NT holds until the field [5]

HF � �K0
b=���

1=2��=D�; (1)

above which l̂l bends over in a Fréedericksz transition [6].
Third, a counterflow v 	 vn � vs parallel to the walls
favors l̂l aligned with v due to the flow energy Fv �
� 1

2�0�l̂l � v�2, and hence should also cause a similar
Fréedericksz transition from NT towards a uniformly
tipped texture above the critical velocity [5,7]

vF � ��k
sK0

b=�s�0�
1=2��=D�: (2)

The critical velocity in magnetic field v�H� [or critical
field in the presence of flow H�v�] is predicted to satisfy
[5]
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The relative importance of various terms is as follows:
the dipole locking Fd dominates the effect of confin-
ing walls Fslab at distances D � �d � �2Kb=�d�

1=2 

10 �m; Fd dominates the magnetic energy FH in field
H � Hd � ��d=���1=2 
 20 G; FH dominates Fslab at
distances D � �H�H� � �2Kb=���1=2H�1 � �d�Hd=H�;
the anisotropy of the flow energy Fv dominates the dipole
locking Fd for velocities v � vd,

vd � ��d=�0�
1=2 � 	h=2m�d 
 1 mm=s: (4)

Additionally, a term Fl � � 1
2 v � C0 l̂l�l̂l � �r � l̂l�� in the

interaction between the counterflow and orbital currents
favors helical winding of l̂l around v. Hence, at a second
higher critical velocity the aligned texture becomes un-
stable, typically leading to the creation of discrete con-
tinuous vortices, stable nonuniform l̂l textures with
associated circulating vs but without singularity of the
order parameter in the core. The continuous vortices in a
slab at H � 0 are of the two-quantum Anderson-
Toulouse–type [1,8]. The vorticity is localized within
their soft core of radius ac, outside which the texture is
uniform and the circulation of vs is equal to 2�0 [9].
For H � 0, ac �D while, for H � Hd, ac � �d. For H
between ��d=D�Hd �HF and Hd, it interpolates as
ac�H� � �H.

In superfluid 4He and 3He-B superflow is topologically
stable due to the quantization of the circulation.
Dissipation in the form of discrete phase slips is prohib-
ited by the macroscopic potential barrier to the nucleation
of a vortex of critical size of order of the vortex core, after
which the process of vortex growth is irreversible. The
corresponding vc is inversely proportional to the vortex
core size [10]. These ideas successfully explained the
observed values in 4He and 3He-B, and even in 3He-A in
high magnetic field [2,10]. 3He-A is different as the cir-
culation is not quantized and hence the superflow is not
topologically stable at H � 0: rotation of l̂l (for example,
in the form of moving continuous vortices) can dissipate
kinetic energy continuously. Therefore in an open geome-
try and in zero field one would expect no potential barrier
preventing such textural motion. In a slab the critical
velocity would be inversely proportional to the soft core
radius ac�D;H� [1,10],

va�D;H� � 	h=2mac; (5)

for H � 0, va � 	h=2mD� vF;
for HF � H � Hd, va � vd�H=Hd�;
for H � Hd, va � 	h=2m�d � vd.
Thus, only in narrow channels or high fields one would

have substantial vc � 1 mm=s. However, because of the
term Fv, coupling l̂l and v, the l̂l texture aligned along v
was predicted to be stable provided the texture is dipole
locked [11]. Hence, aligned textures cannot nucleate vor-
tices until the counterflow exceeds the dipole-unlocking
critical velocity �vd. The two models for vc, Eqs. (4) and
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(5), predict similar values in fields H > Hd but disagree
considerably in the limit of H � 0 for D � �d. To clarify
the issue, we measured vc at H � 0.

We studied liquid 3He-A at pressure 29.3 bars in a disk-
shaped volume of thickness D � 0:26 mm and radius
R � 5:0 mm inside an epoxy torsional head on a BeCu
stem. The disk’s axis was aligned with that of the cryostat
which could rotate continuously at angular velocity � �
0–1 rad=s while keeping the sample at the temperature of
interest T � 2–2:5 mK. The magnetic field H � 0–25 G
perpendicular to the disk was provided by a supercon-
ducting coil. The oscillator was driven capacitively at a
frequency near its resonance, and the drive amplitude was
kept sufficiently small so as not to affect the texture
(large amplitude drive does persuade l̂l to align azimu-
thally with the ac flow [6]). The resonant frequency, �R 

627 Hz, and bandwidth 
 0:12 Hz of the torsional reso-
nance were monitored as a function of T, �, and H. The
viscous penetration depth was comparable with D for all
orientations of l̂l. As a result, �R is primarily sensitive to
the temperature-dependent normal density �n�T� [which
was used as an internal thermometer based on known
�n�T� [6] ] and reorientation of l̂l through the anisotropy
of �n. High-quality textures of 3He-A were obtained by
slowly cooling (at rate �1 �K=min) through Tc at H � 0
while rotating at � � 0:46 rad=s; NT was produced after
rotation was stopped below Tc.

While rotating at � (and with N two-quantum vortices
forming a vortex cluster) the counterflow at radius r out-
side the vortex cluster is

v�N;�; r� 	 vn��; r� � vs�N; r� � �r� 2�0N=2�r:

(6)

v�r� is highest near the outer edge at r 
 R, because R �
D the flow there is approximately straight and uniform;
hence, the Fréedericksz transition should first occur at
r 
 R when v�R� � vF. However, the boundary condi-
tions at the outer edge additionally stiffen the texture
within some �D from the edge. Hence, we assume that
the transition starts at some radius RF 
 R (R� RF �D)
and then propagates inwards at radius rF��� such that
v�rF� � vF. Between rF��� and RF, l̂l tends to be aligned
with v to form azimuthal texture (AT).

The Fréedericksz transition was detected by the shift
in �R��� caused by the reorientation of l̂l as in the studies
of the field-induced Fréedericksz transition [6,12]. An
example is shown in Fig. 1. The frequency shift above
�F is sharp and reversible. Between three and eight
vortices (N0 � 3–8) always remained weakly pinned in
the slab after sufficiently fast rotation, presumably, by
irregularities of the slab surfaces. Their circulation,
2�0N0, biased the apparent values of �F (open circles
in Fig. 2) by �0 � 2�0N0=2�R2 � 0:003–0:007 rad=s.
These vortices could be removed by slow rotation to � �
�0:01 rad=s in the opposite direction, after which the
225301-2



FIG. 1. Frequency shift vs angular velocity in a sample with
trapped vortices (triangles) and after removing them (squares,
diamonds), during acceleration (closed symbols) and decelera-
tion (open symbols). The onsets of the Fréedericksz transitions
are labeled; dashed lines guide the eye. T � 0:92Tc.
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bias disappeared, and the vortex-free texture was stable
for rotation with �< vc=R (Fig. 1). The value of �F was
then the same for rotation in both directions (closed
circles in Fig. 2). It increases slightly with temperature;
the equivalent linear velocity �FR (right axis in Fig. 2)
extrapolates to 0:16 mm=s at Tc which is close to vF �
0:14 mm=s as predicted by Eq. (2) for homogeneous flow
in an infinite slab. At all temperatures, �FR is slightly
higher than the values of vF calculated from Eq. (2). The
apparent disagreement can be completely resolved if we
set RF � 4:65 mm.

The measured �R during a typical rotation sweep from
� � 0 to �max � 0:46 rad=s at H � 0 and T � 0:95Tc is
shown in Fig. 3 (the bandwidth shows the same features,
but its signal-to-noise ratio is worse [13]). While accel-
erating, there are three regimes separated by angular
velocities �F � 0:03 rad=s and �c � 0:12 rad=s. Only
if �max exceeded �c do the values of �R��� on decelera-
tion become different: it returns to the initial value �R�0�
not at �F but at �min � 0:34 rad=s (the value of �min

depends on �max) and then stays constant all the way
down to � � 0. A number of sweeps up to different �max

have been performed at different temperatures and for
different samples of defect-free textures. They were re-
producible provided the rotation was always in the same
FIG. 2. Temperature dependence of the critical velocities �F

(circles) and �c (triangles) and corresponding �FR, �cR (right
axes) at H � 0 in six samples. The line follows Eq. (2).
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direction as that used during the initial cooling through
Tc(rotation in the opposite direction produces static tex-
tural defects).

To model �R��� at H � 0, we assume that between
rF��� and RF the texture switches from NT to AT, the
latter having higher normal density. This causes the
increase in the moment of inertia �I�rF� / �R4

F � r4F�
and hence the frequency shift �R��� � �R�0� �
��R�r

4
F��� � R4

F�, where ��R�T� is a fitting parameter.
Vortices nucleate at a critical distance from the edge (i.e.,
at a radius Rc <R) when v�Rc� reaches vc. There are
three different states during acceleration [(a), (b), (c)]
and two during deceleration [(d), (e)] (see the cartoons in
Fig. 3). (a) 0<�<�F: NT everywhere. (b) �F <�<
�c: The Fréedericksz transition propagates inwards at
rF��� maintaining v�N0;�; rF� � vF. (c) �c <�:
Vortices nucleate and move to the center of the disk
maintaining v�N;�; Rc� � vc. (d) �min <�<�max:
During deceleration from �max to �min, Nmax � const,
where v�Nmax;�max; Rc� � vc. (e) �<�min��max�:
When v�Nmax;�min; RF� � vF, rF reaches RF again and
the belt of tipped texture disappears; the vortices soon
start to annihilate as � decreases, thus maintaining zero
average counterflow.

The conditions (a)–(e) yield the relation

R2
c��max ��c� � R2

F��min ��F�: (7)

Hence there are four independent parameters in the
model: �F;�c; Rc=RF;��R. The solid line in Fig. 3 is
the fit to the experimental data. This yields the ratio of
Rc=RF � 0:94� 0:02, the same as given by Eq. (7) using
hand-picked values of �F;�c;�min��max�. We also show
in Fig. 3 the best fit with fixed value of Rc � RF, which is
clearly inadequate. Thus, Rc is 
 0:3 mm smaller than
FIG. 3. Frequency shift during a rotation sweep to �max �
0:46 rad=s and back. The cartoons represent five different
regimes separated by �F;�c;�max;�min (white background,
NT; grey, AT). Within our model, the shift in �R is proportional
to the extra moment of inertia of the grey outer belt with the
inner radius rF���. The solid (dotted) line is the fit with Rc �
0:94RF (Rc � RF). T � 0:95Tc.
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FIG. 4. Magnetic field dependence at T � 0:90Tc of �F and
�c (left axis), and �FR and �cR (right axis). The solid line is
the theoretical threshold for the onset of dissipation at T �
0:90Tc of a uniform flow through a domain wall from [14]. The
vertical dashed line at H � HF indicates switching between
two initial textures of different symmetries: the azimuthal flow
(left cartoon) and two domain walls (right cartoon).
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RF, which itself should be within �D from R. Assuming
RF � 4:65 mm takes Rc to 0:94RF 
 4:4 mm. This agrees
with the expectation that the vortices nucleate at a critical
distance from the wall about the soft core size, which is
�D at H � 0.

The fitting parameter �c is shown by triangles in Fig. 2
and also as equivalent linear velocities �cR. For each
sweep the small bias �0 (mean 0:005� 0:001 rad=s), due
to trapped vortices, was subtracted. The value of �c is
fairly temperature independent and averages to �cR �
0:59� 0:05 mm=s or, if Rc � 4:4 mm is used, to �cRc �
0:52� 0:04 mm=s. The scatter is modest suggesting that
we achieved a good control of the initial texture. The
values are consistent with the estimate vc � 1 mm=s
from Eq. (4) for the critical velocity for the texture
stabilized by the parallel flow. On the other hand, the
calculated threshold for the instability of the helical
texture in a bulk flow at H � 0 near Tc [14] is 1:3vd �
1:4 mm=s. One possible explanation of the discrepancy is
that our texture at Rc is not perfectly aligned with the
flow because of the walls and outer edge; hence the
stabilizing effect of the term Fv is reduced.

In magnetic field, the Fréedericksz transition (open
circles in Fig. 4) was observed both by sweeping � while
keeping H constant and by sweeping H while keeping �
constant. The values of vF�H� follow Eq. (3).

The critical velocities �c�H� and vc�H� � �cR (closed
circles in Fig. 4) were obtained in rotation sweeps, 0 !
�max ! 0, while keeping the field H constant; one can
see a minimum of �c�H� 
 �F�0� � 0:03 rad=s at H 
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6–12 G. However, if we first set rotation at � such as
�F <�<�c�0� and then swept H from 0 to 25 G and
back, no vortices are nucleated. This indicates that one
can have two topologically different l̂l textures in rotation
(see the cartoons in Fig. 4): at H <HF it is a defect-free
rotationally invariant AT [formed during initial accelera-
tion at H <HF�0�, and preserved even after subsequent
sweeping H well above HF]; while at H > HF the texture
evolves from a PT into a state where the azimuthal
counterflow crosses two domain walls (increased rotation
only deforms it in the azimuthal direction, but preserves
the mirror symmetry). The calculated critical velocity
[14] for the dissipation onset in a bulk flow through a
dipole-locked domain wall (line in Fig. 4) is in good
agreement. This line actually follows quite closely the
predictions of Eq. (5) for H > HF.

Thus, provided there are no textural defects, 3He-A can
maintain a substantial steady nondissipative counterflow
even in a 0.26 mm thick channel and a small magnetic
field. The critical velocity vc 
 0:5 mm=s is set by dipole
unlocking. Domain walls suppress it to vc � 	h=2mac.
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