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Critical Velocity of Continuous Vortex Nucleation in a Slab of Superfluid *He-A
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A flow-induced Fréedericksz transition is observed in a 0.26 mm thick disk-shaped slab of superfluid
3He-A using a rotating cryostat and a torsional oscillator, and it is used to detect vortices in zero
magnetic field. The phenomena are studied as a function of magnetic field normal to the slab. In defect-
free 1 texture the critical velocity for vortex nucleation is 0.5 mm/s, but in the presence of a domain
wall it is reduced to ~F/2ma,, where a.(H) is the field-dependent radius of the vortex soft core. The
vortices nucleate at a distance at least 0.3 mm from the outer edge of the disk.
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Phase slips, caused by moving zeros of the order pa-
rameter in singular cores of quantized vortex lines, are
the standard mechanism of superflow decay in conven-
tional superfluids and superconductors. *He-A is different
as there is another mechanism dissipating the energy of
flow by rotating its anisotropy axis I without suppressing
the order parameter [1]. Albeit very different microscopi-
cally, this process can still be described macroscopically
as the nucleation and motion of continuous quantized
vortices. Moreover, because in 3He-A the relevant reor-
ientations occur only on length scales greater than some
10 um (much larger in small magnetic field) from con-
tainer walls [2], the uncontrollable disorder due to the
wall roughness does not make the vortex nucleation ex-
trinsic as is the case in superfluid “He, *He-B, and super-
conductors. Hence, *He-A is the best available system in
which to study the intrinsic nucleation of vortices as a
hydrodynamic instability of flow in a well-controlled
geometry. It also benefits from the existence of the micro-
scopic theory for all hydrodynamic parameters.

Magnetic field H or container walls restrain the 1
texture, hence stabilizing a finite value of the critical
velocity of vortex nucleation, v.. In this context, the
question whether 3He-A can sustain a finite nondissipative
flow at H = 0 in a wide channel is in fact the test of
superfluidity of He-A. The interaction between I and flow
or other fields is hence a fundamental problem. These
interactions also lead to the possibility of creating differ-
ent metastable textures. Earlier attempts to measure v, at
H = 0 with a piston-driven flow [3] through a mm-sized
rectangular channel revealed a broad range of v, =
0.5-2 mm/s, probably caused by poor control of textures.
Continuous rotation is the only way to achieve steady flow
in *He: this was recently employed in NMR studies of
SHe-A in a long rotating cylinder [2], but only in high
magnetic field, H = 100-300 G, and without full control
of textures. They showed that the value of v, =
0.2-1.5 mm/s depends on the initial i texture, and the
presence of domain walls greatly reduces v..

We report reproducible measurements of critical veloc-
ities for flow-induced reversible and irreversible textural
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transitions in rotating *He-A. We gain control of the
texture by placing *He-A in a slab of thickness D. This
also imposes a length scale D which is the radius of the
soft core of continuous vortices in zero field. We then
apply magnetic field to control the vortex soft core size
and to introduce a pair of domain walls on demand. We
also describe a new vortex detection technique that is
based on the sensitivity of a torsional oscillator to reor-
ientation of I caused by the counterflow surrounding the
vortex cluster and can be used in zero field.

3He-A is a fermionic superfluid [4] with the Cooper
pairs in the p-wave spin-triplet state all having their
orbital momentum locally pointing in the same direction
I(r). The spin anisotropy axis d(r) tends to be aligned
with 1 because of the dipole-dipole interaction energy
Fg=—1a(d- i)z.AIn what follows we consider this “di-

ole-locked” case d = =1 and call the spatial variation of
I(r) the texture.

Three competing effects orient the texture in a slab.
First, the boundaries force 1 normal to them favoring a
uniform normal texture (NT) because tipping the I vector
in the middle of the slab costs kinetic energy Fg, ~
K{)D_z. Second, the magnetic energy in a perpendicular
field F; = £ Ax(d - H)? favors a uniform planar texture
(PT) parallel to the walls; NT holds until the field [5]

Hg = (K} /Ax)"/*(w/D), (1

above which 1 bends over in a Fréedericksz transition [6].
Third, a counterflow v = v, — v, parallel to the walls
favors 1 aligned with v due to the flow energy F, =
-1 po(l-v)2, and hence should also cause a similar
Fréedericksz transition from NT towards a uniformly
tipped texture above the critical velocity [5,7]

ve = (plK}/ pspo)/2(m/ D). (2)

The critical velocity in magnetic field v(H) [or critical
field in the presence of flow H(v)] is predicted to satisfy
(5]

(H/Hg)* + (v/vp)* = L 3
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The relative importance of various terms is as follows:
the dipole locking F; dominates the effect of confin-
ing walls Fg,, at distances D> &3 = 2K,/Ag)'/? =
10 um; Fy dominates the magnetic energy Fpy in field
H < Hy = (Ay/Ax)"/? = 20 G; Fy dominates Fy,, at
distances D > &4(H) = 2K, /Ax)"2H™! = ¢,(Hy/H);
the anisotropy of the flow energy F, dominates the dipole
locking Fy for velocities v > vy,

vg = (Aa/po)/? = i/2méy =~ 1 mm/s. 4

Additionally, a term F; = —1v- Col[1- (V X 1)] in the
interaction between the counterflow and orbital currents
favors helical winding of 1 around v. Hence, at a second
higher critical velocity the aligned texture becomes un-
stable, typically leading to the creation of discrete con-
tinuous vortices, stable nonuniform 1 textures with
associated circulating vy but without singularity of the
order parameter in the core. The continuous vortices in a
slab at H =0 are of the two-quantum Anderson-
Toulouse—type [1,8]. The vorticity is localized within
their soft core of radius a., outside which the texture is
uniform and the circulation of v, is equal to 2, [9].
For H =0, a, ~ D while, for H> Hy, a, ~ &4. For H
between (&;/D)Hy ~ Hp and Hy, it interpolates as
ac(H) -~ é:H-

In superfluid “He and *He-B superflow is topologically
stable due to the quantization of the -circulation.
Dissipation in the form of discrete phase slips is prohib-
ited by the macroscopic potential barrier to the nucleation
of a vortex of critical size of order of the vortex core, after
which the process of vortex growth is irreversible. The
corresponding v, is inversely proportional to the vortex
core size [10]. These ideas successfully explained the
observed values in “He and *He-B, and even in 3He-A in
high magnetic field [2,10]. *He-A is different as the cir-
culation is not quantized and hence the superflow is not
topologically stable at H = 0: rotation of 1 (for example,
in the form of moving continuous vortices) can dissipate
kinetic energy continuously. Therefore in an open geome-
try and in zero field one would expect no potential barrier
preventing such textural motion. In a slab the critical
velocity would be inversely proportional to the soft core
radius a.(D, H) [1,10],

v,(D, H) ~ h/2ma, (5)

for H =0, v, ~ h/2mD ~ vg;

for HF < H<K Hd’ v, ~ vd(H/Hd)’

for H> Hy, v, ~ h/2mé&y = vy.

Thus, only in narrow channels or high fields one would
have substantial v, ~ 1 mm/s. However, because of the
term F,, coupling I and v, the 1 texture aligned along v
was predicted to be stable provided the texture is dipole
locked [11]. Hence, aligned textures cannot nucleate vor-
tices until the counterflow exceeds the dipole-unlocking
critical velocity ~v,. The two models for v, Egs. (4) and
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(5), predict similar values in fields H > H,4 but disagree
considerably in the limit of H = 0 for D > &,. To clarify
the issue, we measured v, at H = 0.

We studied liquid 3He-A at pressure 29.3 bars in a disk-
shaped volume of thickness D = 0.26 mm and radius
R = 5.0 mm inside an epoxy torsional head on a BeCu
stem. The disk’s axis was aligned with that of the cryostat
which could rotate continuously at angular velocity {) =
0-1 rad/s while keeping the sample at the temperature of
interest 7 = 2-2.5 mK. The magnetic field H = 0-25 G
perpendicular to the disk was provided by a supercon-
ducting coil. The oscillator was driven capacitively at a
frequency near its resonance, and the drive amplitude was
kept sufficiently small so as not to affect the texture
(large amplitude drive does persuade 1 to align azimu-
thally with the ac flow [6]). The resonant frequency, vg =
627 Hz, and bandwidth = 0.12 Hz of the torsional reso-
nance were monitored as a function of 7, ), and H. The
viscous penetration depth was comparable with D for all
orientations of 1. As a result, v is primarily sensitive to
the temperature-dependent normal density p,(7) [which
was used as an internal thermometer based on known
p.(T) [6]1] and reorientation of 1 through the anisotropy
of p,. High-quality textures of *He-A were obtained by
slowly cooling (at rate ~1 wK/ min) through T, at H = 0
while rotating at () = 0.46 rad/s; NT was produced after
rotation was stopped below T.

While rotating at {) (and with N two-quantum vortices
forming a vortex cluster) the counterflow at radius r out-
side the vortex cluster is

v(N,Q,r) =v,(Q,r) — vy(N, r) = Qr — 2keN/27r.
(6)

v(r) is highest near the outer edge at r = R, because R >
D the flow there is approximately straight and uniform;
hence, the Fréedericksz transition should first occur at
r = R when v(R) = vp. However, the boundary condi-
tions at the outer edge additionally stiffen the texture
within some ~D from the edge. Hence, we assume that
the transition starts at some radius Rg = R (R — Rg ~ D)
and then propagates inwards at radius rg({)) such that
v(rg) = vp. Between rp(Q) and Ry, 1 tends to be aligned
with v to form azimuthal texture (AT).

The Fréedericksz transition was detected by the shift
in vg(Q) caused by the reorientation of 1 as in the studies
of the field-induced Fréedericksz transition [6,12]. An
example is shown in Fig. 1. The frequency shift above
Qp is sharp and reversible. Between three and eight
vortices (N, = 3-8) always remained weakly pinned in
the slab after sufficiently fast rotation, presumably, by
irregularities of the slab surfaces. Their circulation,
2koNy, biased the apparent values of () (open circles
in Fig. 2) by Qy = 2koNy/27R? = 0.003-0.007 rad/s.
These vortices could be removed by slow rotation to {) =
—0.01 rad/s in the opposite direction, after which the

225301-2



VOLUME 91, NUMBER 22

PHYSICAL REVIEW LETTERS

week ending
28 NOVEMBER 2003

% 0 s COTRRS ﬁcvyacguéf_? "y

E .1 O.v"] o g .

= 2 g -Qp Qr T

=] QF + Q()‘“ 7
13¢ % ]

G - P

\":2 -4 T T T T

> -0.04 -0.02 0.00 0.02 0.04 Q (rad/s)

FIG. 1. Frequency shift vs angular velocity in a sample with
trapped vortices (triangles) and after removing them (squares,
diamonds), during acceleration (closed symbols) and decelera-
tion (open symbols). The onsets of the Fréedericksz transitions
are labeled; dashed lines guide the eye. T = 0.92T..

bias disappeared, and the vortex-free texture was stable
for rotation with ) < v./R (Fig. 1). The value of Qy was
then the same for rotation in both directions (closed
circles in Fig. 2). It increases slightly with temperature;
the equivalent linear velocity QgR (right axis in Fig. 2)
extrapolates to 0.16 mm/s at T, which is close to vg =
0.14 mm/s as predicted by Eq. (2) for homogeneous flow
in an infinite slab. At all temperatures, gR is slightly
higher than the values of vg calculated from Eq. (2). The
apparent disagreement can be completely resolved if we
set Rp = 4.65 mm.

The measured v during a typical rotation sweep from
O =0toQ,, =046rad/sat H=0and T = 0.95T, is
shown in Fig. 3 (the bandwidth shows the same features,
but its signal-to-noise ratio is worse [13]). While accel-
erating, there are three regimes separated by angular
velocities Qp = 0.03 rad/s and Q. = 0.12 rad/s. Only
if Q. exceeded . do the values of vg({)) on decelera-
tion become different: it returns to the initial value vg(0)
not at Q but at O, = 0.34 rad/s (the value of Q,,
depends on (,.) and then stays constant all the way
down to () = 0. A number of sweeps up to different Q..
have been performed at different temperatures and for
different samples of defect-free textures. They were re-
producible provided the rotation was always in the same
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FIG. 2. Temperature dependence of the critical velocities ()

(circles) and (), (triangles) and corresponding xR, Q) R (right
axes) at H = 0 in six samples. The line follows Eq. (2).
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direction as that used during the initial cooling through
T.(rotation in the opposite direction produces static tex-
tural defects).

To model vg()) at H = 0, we assume that between
re(Q)) and Ry the texture switches from NT to AT, the
latter having higher normal density. This causes the
increase in the moment of inertia Al(rg) o (RE — rf)
and hence the frequency shift vg(Q)— vgz(0) =
Avgr(ri(Q) — R}), where Awvg(T) is a fitting parameter.
Vortices nucleate at a critical distance from the edge (i.e.,
at a radius R, < R) when v(R,) reaches v.. There are
three different states during acceleration [(a), (b), (c)]
and two during deceleration [(d), (e)] (see the cartoons in
Fig. 3). (a) 0 < Q < Qg: NT everywhere. (b) QO < <
Q.. The Fréedericksz transition propagates inwards at
re(Q)) maintaining v(Ny, Q, rg) = ve. (¢) Q. <Q:
Vortices nucleate and move to the center of the disk
maintaining v(N, Q, R.) = v.. (d) Quin < Q < Qg
During deceleration from Q. t0 Q> Npax = const,
where U(Nmax: Qmax: Rc) = Ve (e) Q< Qmin(nmax):
When v(Nyax Qmin, Re) = vg, rp reaches Ry again and
the belt of tipped texture disappears; the vortices soon
start to annihilate as () decreases, thus maintaining zero
average counterflow.

The conditions (a)—(e) yield the relation

R%(Qmax - Qc) = R%(Qmin - QF) @)
Hence there are four independent parameters in the
model: Qp, Q, R./Rp, Avg. The solid line in Fig. 3 is
the fit to the experimental data. This yields the ratio of
R./Rp = 0.94 * 0.02, the same as given by Eq. (7) using
hand-picked values of Qg, Q¢, Qin (D). We also show
in Fig. 3 the best fit with fixed value of R, = R, which is
clearly inadequate. Thus, R, is = 0.3 mm smaller than
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FIG. 3. Frequency shift during a rotation sweep to Q.x =
0.46 rad/s and back. The cartoons represent five different
regimes separated by Qp, Q¢, Qe Qmin (White background,
NT; grey, AT). Within our model, the shift in vy is proportional
to the extra moment of inertia of the grey outer belt with the
inner radius rg()). The solid (dotted) line is the fit with R, =
0.94Rg (R. = Rp). T = 0.95T..
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FIG. 4. Magnetic field dependence at T = 0.907, of f and
Q. (left axis), and QR and QR (right axis). The solid line is
the theoretical threshold for the onset of dissipation at T =
0.907, of a uniform flow through a domain wall from [14]. The
vertical dashed line at H = Hg indicates switching between
two initial textures of different symmetries: the azimuthal flow
(left cartoon) and two domain walls (right cartoon).

Ry, which itself should be within ~D from R. Assuming
Rp = 4.65 mm takes R, to 0.94Rr = 4.4 mm. This agrees
with the expectation that the vortices nucleate at a critical
distance from the wall about the soft core size, which is
~DatH = 0.

The fitting parameter (), is shown by triangles in Fig. 2
and also as equivalent linear velocities () .R. For each
sweep the small bias (), (mean 0.005 * 0.001 rad/s), due
to trapped vortices, was subtracted. The value of (). is
fairly temperature independent and averages to (J.R =
0.59 = 0.05 mm/s or, if R, = 4.4 mm is used, to Q. .R, =
0.52 * 0.04 mm/s. The scatter is modest suggesting that
we achieved a good control of the initial texture. The
values are consistent with the estimate v, ~1 mm/s
from Eq. (4) for the critical velocity for the texture
stabilized by the parallel flow. On the other hand, the
calculated threshold for the instability of the helical
texture in a bulk flow at H = 0 near T, [14] is 1.3v4 =
1.4 mm/s. One possible explanation of the discrepancy is
that our texture at R_ is not perfectly aligned with the
flow because of the walls and outer edge; hence the
stabilizing effect of the term F, is reduced.

In magnetic field, the Fréedericksz transition (open
circles in Fig. 4) was observed both by sweeping () while
keeping H constant and by sweeping H while keeping ()
constant. The values of vg(H) follow Eq. (3).

The critical velocities ).(H) and v.(H) = R (closed
circles in Fig. 4) were obtained in rotation sweeps, 0 —
Q. — 0, while keeping the field H constant; one can
see a minimum of Q (H) = Qr(0) = 0.03 rad/s at H =
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6-12 G. However, if we first set rotation at {) such as
Qp < Q < Q,(0) and then swept H from 0 to 25 G and
back, no vortices are nucleated. This indicates that one
can have two topologically different I textures in rotation
(see the cartoons in Fig. 4): at H < Hp. it is a defect-free
rotationally invariant AT [formed during initial accelera-
tion at H < Hg(0), and preserved even after subsequent
sweeping H well above Hg]; while at H > Hp the texture
evolves from a PT into a state where the azimuthal
counterflow crosses two domain walls (increased rotation
only deforms it in the azimuthal direction, but preserves
the mirror symmetry). The calculated critical velocity
[14] for the dissipation onset in a bulk flow through a
dipole-locked domain wall (line in Fig. 4) is in good
agreement. This line actually follows quite closely the
predictions of Eq. (§) for H > Hr.

Thus, provided there are no textural defects, *He-A can
maintain a substantial steady nondissipative counterflow
even in a 0.26 mm thick channel and a small magnetic
field. The critical velocity v, = 0.5 mm/s is set by dipole
unlocking. Domain walls suppress it to v, ~ A/2ma,.
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