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Strong Spatiotemporal Localization in a Silica Nonlinear Waveguide Array
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We investigate the propagation of short, intense laser pulses in arrays of coupled silica waveguides, in
the anomalous dispersion regime. The nonlinearity induces trapping of the pulse in a single waveguide,
over a wide range of input parameters. A sharp transition is observed for single waveguide excitation,
from strong diffraction at low powers to strong localization at high powers.
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have been generated in bulk quadratic media, where stable
propagation was demonstrated in the temporal dimension

Schrödinger equations (NLSE), Aceves et al. have shown
that the discrete nature of the structure effectively acts as
Optical solitons are localized electromagnetic waves
that propagate in nonlinear media where dispersion and/
or diffraction are present. They are the most thoroughly
studied form of solitons, in view of their potential appli-
cation in optical communications and switching devices.
Optical solitons that exhibit confinement in one trans-
verse dimension, either spatial or temporal, have been the
subject of extensive theoretical and experimental inves-
tigations [1]. Far less is known about multidimensional
solitons that exhibit confinement in more than one trans-
verse dimension, and, in particular, about spatiotemporal
solitons (STS). One of the most intriguing cases is when
diffraction and dispersion have the same magnitude. In
this situation, the nonlinearity may simultaneously bal-
ance both, leading to the formation of an STS that is
symmetrical in all transverse dimensions. Such STS are
sometimes called ‘‘light bullets,’’ and were originally
proposed in the context of media with a positive Kerr
nonlinearity and anomalous dispersion [2]. However, ba-
sic analysis shows that these STS are unstable, and tend to
either disperse or experience a catastrophic self-focusing
(‘‘collapse’’) for pulse energies that exceed a certain criti-
cal value [2]. Nevertheless, such a mathematical collapse
is usually avoided in experiments, due to higher-order
nonlinearities and dispersion, which become increasingly
important during the collapse. The interplay of these ef-
fects was studied recently in a planar glass waveguide,
where the pulse disperses in one dimension and diffracts
in another (this is known as a ‘‘1� 2’’ case, where the
‘‘1’’ denotes the direction of propagation and the ‘‘2’’
refers to the number of transverse dimensions in which
the wave packet can diffract or disperse) [3]. In that
experiment, simultaneous spatial and temporal self-
focusing was observed in the anomalous dispersion re-
gime, and multiphoton absorption (MPA) and stimulated
Raman scattering (SRS) were suggested as possible
mechanisms that arrest the collapse. In parallel, STS
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and in one spatial dimension, while diffraction occurred
in the remaining spatial dimension [4]. Thus, the realiza-
tion of a true STS, especially in Kerr media, remains an
important goal in the field of soliton physics.

A particularly interesting situation arises when a pulse
propagates in an array of coupled one-dimensional wave-
guides. Such a periodic array is a one-dimensional pho-
tonic crystal, and in many respects its behavior is
intermediate between one-dimensional (‘‘1� 1’’) and
two-dimensional (‘‘1� 2’’). For example, diffraction in
these structures takes the form of a weak coupling be-
tween adjacent waveguides, and leads to a characteristic
discrete diffraction where the light distribution has the
form of a Bessel function [5]. Spatial solitons also form in
these structures, and have been studied extensively both
theoretically [6] and experimentally [7]. These discrete
solitons present a number of novel and intriguing dy-
namical properties. For example, both stable and unstable
spatial solitons are supported, and the difference of en-
ergy between the two, called the Peierls-Nabarro poten-
tial, accounts for the tendency of discrete solitons to lock
to the waveguide direction at high powers, or to acquire
transverse momentum and shift laterally, depending on
the input parameters [8]. Moreover, the sign and value of
diffraction in waveguide arrays is a function of the
propagation direction [9], with important consequences
to the linear and nonlinear properties [10].

These peculiar properties of discrete solitons have been
studied extensively in AlGaAs waveguide arrays [7,8,10].
However, AlGaAs has a normal dispersion, and therefore
cannot support STS. Indeed, with anomalous dispersion,
which is a prerequisite for the formation of STS, the
differences between discrete and continuum solitons are
expected to be significant. In addition, the instability and
collapse of STS is expected to disappear in coupled
waveguide arrays. Using coupled mode theory, in the
form of linearly coupled one-dimensional nonlinear
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a saturable nonlinearity and, instead of a catastrophic
collapse, energy localization in a single waveguide is
expected, accompanied by strong temporal compression
[11]. The localization and temporal compression in an
array were demonstrated numerically [11]. Self-trapping
was also demonstrated numerically [12]. However, the
necessary initial conditions for such STS-like behavior
were not clearly identified.

In this work, we present experimental evidence for such
strong spatial localization in a single waveguide, with
anomalous dispersion. We use arrays of silica waveguides,
where the dispersion is anomalous for laser pulses with
wavelengths in the optical communication window (� �
1:5 �m). We employ two different experimental configu-
rations that result in different initial conditions: a broad
input beam and single waveguide excitation. In the first
configuration, the observed behavior is reminiscent of the
collapse in the ‘‘1� 2’’ case [3], while in the second
configuration we observe an extremely sharp transition
from a regime of strong diffraction to a regime of strong
spatial localization, as a function of the input power. The
latter suggests the existence of a range of parameters
where quasistable propagation may exist.

The sample that we used is 2.5 cm long, and consists of
several one-dimensional periodic arrays, each with 101
weakly coupled optical waveguides, buried inside a layer
of flame hydrolysis deposited silica. The core of each
single-mode waveguide is germanium-boron doped
silica, has a square cross section of 4 �m� 4 �m, and
is surrounded by a silica cladding. The refractive index
step between the cladding and the core is �n � 0:75%.
The period of the different arrays d (see Fig. 1) varies
between 11 �m and 13 �m, in order to modify the de-
gree of coupling between adjacent waveguides. We inject
transform-limited 60 fs pulses, at a wavelength of
1520 nm and with peak powers up to 2 MW, generated
by a Spectra Physics OPA 800 optical parametric ampli-
fier. The spatial profile of the input beam is varied as to
excite just one or several waveguides. A microscope ob-
jective and a cylindrical lens are combined in order to
obtain an elliptical input beam, ’170 �m wide, with a
flat phase front at the input facet of the sample. This
FIG. 1. Experimental setup and sample cross section.
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arrangement allows matching of the beam size, and
thereby the diffraction length, to the dispersion length.
The cylindrical lens may be removed to allow single
waveguide excitation. The output facet of the sample is
imaged onto an infrared camera. A portion of the beam is
directed to a spectrometer, and another portion to a non-
collinear autocorrelator. The 100 �m thick beta barium
borate crystal in the autocorrelator allows accurate mea-
surements of pulse durations down to 10 fs, and the glass
in the optical path to the autocorrelator introduces a
systematic error of less than 10 fs in the measurements.
An aperture, placed in an image plane of the output facet,
allows temporal and spectral characterization of the cen-
tral part of the output beam. The spatial cross section,
power spectrum, autocorrelation, and output power are
measured as a function of the input power. The experi-
mental data shows little variation between the different
arrays, and the results presented here are typical to all
of them.

Figure 2 presents images of the sample’s output facet,
recorded under different excitation conditions. Fig-
ures 2(a) and 2(b) were both obtained with a broad input
beam (i.e., equal dispersion and diffraction lengths). The
three images in Fig. 2(a) depict a stable spatial soliton,
and correspond to the lowest input power, maximum
spatial compression, and maximum input power (top to
bottom). It can be seen that, as the power of the incoming
beam is increased, the beam width first contracts to about
10 �m, and then gradually broadens. At the minimum
width most of the pulse energy is concentrated in a single
waveguide, with two small satellite pulses in the neigh-
boring waveguides. A small tilt of the input facet relative
to the input beam allows excitation of an unstable soliton,
which is peculiar to the array [8]. As seen in Fig. 2(b), the
self-focusing obtained in this case is rather weak. In
contrast, the spatial compression of the stable soliton is
remarkable. It is substantially stronger than that observed
in the case of normal dispersion [7], and is also more
pronounced than the compression in the perfect planar
configuration [3]. In the following, we focus on the
FIG. 2. Images of the sample’s output facet under different
excitation conditions. (a) Broad input beam (equal dispersion
and diffraction lengths): top to bottom, 0.09, 0.45, and
0.74 MW. (b) The unstable mode is excited with the broad
input beam: top, low power; bottom, high power. (c) Single
waveguide excitation: top, 0.07 MW; bottom, 0.44 MW.
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dynamics of this stable mode of the array. Its evolution as
a function of input power is seen in Fig. 3(a), which shows
a contour plot of a set of ten spatial cross sections of the
beam at the output facet. The corresponding variations of
the beam width and pulse duration are plotted in Fig. 4(a).
The strongest spatial compression lags slightly behind the
maximum temporal compression, possibly due to a small
mismatch between the dispersion and diffraction lengths.
More importantly, the compression is very asymmetric:
While the beam compresses by a factor of �10 relative to
its width at the input, the pulse duration reduces by less
than 10%. This contrasts with the more symmetric com-
pression that was observed under similar conditions in the
‘‘1� 2’’ case [3]. This behavior demonstrates that the
symmetry between the spatial and temporal coordinates
is broken, and strongly suggests that the sudden onset of
significant nonlinear effects, as the pulse compresses into
a single waveguide, induces temporal broadening, fol-
lowed by diffraction. Thus, the symmetry breaking in
the array indeed restrains the collapse. Except for this
pronounced asymmetry, the behavior that we observe
with a broad input beam is very similar to the quasicol-
lapse in two dimensions [3]. Yet, the dynamics at high
input powers, beyond the point of maximum compres-
sion, reveal more subtle differences between the two
geometries. As the spectral data in Fig. 4(b) demon-
strates, the spectrum of the output beam mainly broadens
before maximum compression is achieved, but beyond
that point it strongly shifts to longer wavelengths. The
shift is due to SRS, and is accompanied by a significant
broadening of the pulse [Fig. 4(a)]. This effectively breaks
the symmetry between the spatial and temporal coordi-
nates, and stops the compression. The broadened pulse
then starts to diffract. The diffraction is more regular
than in the two-dimensional case, where a breakup of the
beam to filaments was observed at high input power [3].
FIG. 3. Contour plots of the spatial cross sections at the
output facet, measured as a function of input power, for a
broad input beam (a) and for single waveguide excitation (b).
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Also in contrast with the two-dimensional case [3], in the
present experiment the output power is proportional to
the input power, and there is no evidence for nonlinear
loss. This fact also shows that the array restrains the
collapse more effectively.

A totally different picture is observed when the input
beam is focused into a single waveguide. At low input
powers, the beam strongly diffracts [top image of
Fig. 2(c)], and shows the characteristic Bessel function
light distribution of discrete diffraction [5]. Beyond a
certain, well-defined input power, however, the beam
abruptly contracts, and all the power is essentially local-
ized in one waveguide [bottom image of Fig. 2(c)]. The
spatial distribution at the output facet then shows very
little change as the input power is further increased. The
variation of the beam width at the output facet as a
function of the input power, and the corresponding
changes of the pulse duration and spectrum are plotted
in Figs. 4(a) and 4(c). The evolution of the spatial profile
can also be seen in Fig. 3(b), which is a contour plot of a
set of 11 spatial cross sections of the beam at the output
facet, measured as a function of input power. Two differ-
ent regimes are clearly seen, with an extremely sharp
transition between them. Also note that the pulse duration
at the output facet increases monotonically, and that
following the abrupt localization in a single wave-
guide the temporal broadening and redshift due to SRS
FIG. 4. Spatial, temporal, and spectral data obtained with
different excitation parameters: (a) the variations, as function
of input power, of the beam width (squares) and pulse duration
(triangles), for a broad input beam (full symbols) and for single
waveguide excitation (open symbols). (b) and (c) show the
evolution of the output spectrum as a function of the input
peak power, for a broad input beam and for single waveguide
excitation, respectively (the spectral curves are displaced ver-
tically for better clarity, and the numbers next to the traces
indicate the input peak powers in MW).
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increase dramatically. As in the case of broad beam
excitation, the output power is proportional to the input
power, and there is no evidence for nonlinear loss. In
particular, this means that the fixed spatial distribution
that we observe does not correspond to a well-defined
pulse energy. Rather, the pulse energy increases as the
pulse broadens in the time domain. The peak power at
which the trapping occurs is �0:4� 106 W, which is
100 times lower than the peak power of a 60 fs one-
dimensional soliton, but consistent with a pulse com-
pressed to 6 fs. Clearly, other effects must intervene to
broaden the pulse before it reaches the output facet of the
sample. We also note that the observed variation of
the output wave packet size as function of its energy is
exactly the opposite of that expected of a perfect one-
dimensional light bullet in Kerr media [2]. This means
that the localization in a single waveguide should not be
understood as just a trivial decoupling of the waveguides
due to the nonlinearity.

It is clear from the experimental data that higher-order
nonlinearities, beyond the Kerr nonlinearity, signifi-
cantly modify and complicate the dynamics of the propa-
gating pulse. In particular, the temporal compression
proposed by Aceves et al. [11] is not observed in our ex-
periment. This is mainly due to SRS, and possibly also as
a result of high-order dispersion [13]. Nevertheless, the
broad regime of strong spatial localization that we ob-
serve in the case of single waveguide excitation suggests
the existence of a range of parameters where quasistable
propagation may indeed occur. Since we are only able to
characterize the pulses at the sample’s output facet, our
experiment does not give a direct and conclusive evidence
for such quasistable propagation. However, it is very un-
likely that the pulse, which is initially localized in a
single waveguide, undergoes some unexpected dynamics
inside the sample before reemerging at the output facet in
a localized state. More likely, once the nonlinearity is
strong enough to overcome the diffraction of the narrow
input beam, the pulse is trapped in a single waveguide,
and propagates a distance of several centimeters without
significantly changing its shape. This pulse is definitely
not a symmetrical optical bullet [2], but it is stable in
the sense that its shape does not vary dramatically as the
input power is further increased. In particular, as the
input power is increased, self-focusing does not com-
pletely overcome the other processes that tend to broaden
the wave packet, and the collapse is arrested. On the other
hand, it is obvious that the strong SRS at very high input
powers must result from a strong temporal contraction of
the pulse and, since this contraction is not observed in the
experiment, it is most likely that at these input powers the
pulse initially contracts, and then broadens again, as a
result of high-order dispersion.

We have compared our experimental results to two-
dimensional numerical simulations of the NLSE [3] that
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use the split-step beam propagation method, and take into
account SRS, MPA, high-order dispersion (third and
fourth orders), and the periodic variation of the refractive
index in the array. We find that high-order dispersion is
essential for an effective arrest of the collapse. It also
induces temporal broadening, limits the spectral broad-
ening, and quenches MPA, all in agreement with the
experiment. The simulations also show that at intermedi-
ate input powers the high-order dispersion results in the
formation of an asymmetric pulse, which propagates a
finite distance with very slow changes of its envelope. The
shape of this trapped pulse depends on the magnitude and
sign of the high-order dispersion terms. These results are
in agreement with a recent theoretical analysis [14],
which predicts that a small and negative fourth-order
dispersion arrests the collapse and stabilizes optical
bullets in Kerr media with dimensionality d � 2. A
detailed discussion of the numerical simulations is be-
yond the scope of this paper, and will be presented else-
where. However, they lend support to the interpretation of
the experimental data as an indication for quasistable
propagation.
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