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Functional Integrals for QCD at Nonzero Chemical Potential and Zero Density

Thomas D. Cohen*
Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

(Received 9 July 2003; published 25 November 2003)
222001-1
In a Euclidean space functional integral treatment of the free energy of QCD, a chemical potential
enters only through the functional determinant of the Dirac operator which for any flavor is 6D�m�
�f�0 (where �f is the chemical potential for the given flavor). Any nonzero � alters all of the
eigenvalues of the Dirac operator relative to the � � 0 value, leading to a naive expectation that the
determinant is altered and which thereby alters the free energy. Phenomenologically, this does not occur
at T � 0 for sufficiently small �, in contradiction to this naive expectation. The problem of how to
understand this phenomenological behavior in terms of functional integrals is solved for the case of an
isospin chemical through the study of the spectrum of the operator �0� 6D�m�. The case of the baryon
chemical potential is briefly discussed.
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where SYM is the Yang-Mills action and the functional
effects of j�Ij<m	 in the context of a functional inte-
gral treatment.
Consider QCD with two degenerate light flavors at zero
temperature and a finite isospin chemical potential. At a
phenomenological level much is known about this system
[1]. The behavior at low chemical potential is of interest
here. The energy density and isospin density are known to
be zero for j�Ij<m	. As j�Ij is increased above m	 a
second-order phase transition to a pion condensed state is
reached in which the energy density and isospin density
both continuously increase from zero. It is pretty clear
how to interpret these results in terms of eigenstates of the
QCD Hamiltonian. The critical value of �I corresponds
to the state in the system with the smallest energy per unit
isospin (namely, a pion at rest). Unfortunately, there is no
simple way to obtain these eigenstates starting directly
from the QCD. Here the focus will be on understanding
the phenomenological behavior in terms of a Euclidean
space functional integral formulation of the theory.

For simplicity of presentation, the discussion will be
restricted to two-flavored QCD with degenerate flavors.
The inclusion of additional heavy flavors is straightfor-
ward and does not alter any of the results. As will be
clear, it is necessary to work at finite temperature and
then study the limit as T ! 1 at a later stage. The free
energy is given by GI�T;�I� � E� TS��II3 where E,
T, S, and �I are the energy, temperature, entropy density,
isospin, and chemical potential, respectively. One can
envision working in a finite but large box of volume V
with appropriate boundary conditions. The thermody-
namic limit V ! 1 can be taken at the end of the calcu-
lation and results may then be expressed in terms of
intensive variables such as E � E=V, G � G=V, or �I �
I3=V. The grand partition function, ZI�T�I� �
e��G�T;�I�, with � � 1=T can be represented as a func-
tional integral,

ZI�T;�I� �
Z
d
A�

�������det
�
6D�m�

�I�0
��������

2
e�SYM ; (1)
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integral is evaluated over a four dimensional box with
a temporal length of � and with periodic boundary con-
ditions for the gluons. The functional determinant is
computed over the same box but with antiperiodic
boundary conditions for the fermions and is taken to be
over a single flavor. The absolute value squared arises
since the functional determinant of the up quarks is
the complex conjugate of the functional determinant of
the down quarks provided the chemical potentials for
the two flavors are equal and opposite [2,3]. Thus the
only way that the presence of the chemical potential is
felt is via the functional determinant of the Dirac
operator. The determinant may be represented as
the product of the eigenvalues of the Dirac opera-
tor det
 6D�m� ��I�0=2�� �

Q
j�j, where 
 6D�m�

��I�0=2�� j � �j j.
At this stage one is confronted by something of a

puzzle. A priori, one expects that the eigenspectrum of
the Dirac operator with �I � 0 (and some fixed gauge
configuration) is completely different from the spectrum
with any nonzero �I in the sense that every eigenvalue is
expected to be different; there is no mathematical reason
for the eigenvalues not to depend on �. In the absence of
some conspiracy between the eigenvalues, one would
therefore expect that the functional determinant with
any nonzero �I would differ from the functional deter-
minant �I � 0 and that this would occur for every gauge
configuration. In turn, Eq. (1) would lead one to expect
that if the functional determinants all differ from their
�I � 0 counterparts, that ZI�T;�I� also would vary.
Moreover, this expectation would seem to hold at any
temperature including T � 0. Clearly, this expectation
is wrong. At T � 0 we know phenomenologically that
the free energy is precisely its vacuum value for nonzero
values of �I provided that j�Ij<m	. The puzzle is
simply how can we understand the vanishing physical
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In one sense, this problem might be dismissed as, quite
literally, much ado about nothing; the problem amounts to
getting a mathematical understanding of nothing happen-
ing at the physical level. However, to understand the phase
transition where something does occur, it is necessary to
understand just how it is that nothing occurs below the
transition. Accordingly, it seems fitting to name this the
isospin ‘‘Silver Blaze’’ problem after the Arthur Conan
Doyle story of that name in which the ‘‘curious incident’’
of a dog doing nothing in the nighttime provides Holmes
with an essential clue. There are analogous Silver Blaze
problems associated with the baryon chemical potential,
the strangeness chemical potential, or various linear com-
binations of these chemical potentials.

The key to the solution of the isospin Silver Blaze
problem is the study of eigenstates of �0 times the usual
Dirac operator. The eigenspectrum of the usual Dirac
operator, 6D�m, has received considerable attention in
both random matrix models [4] and lattice studies [5]; the
intense interest is because this eigenspectrum provides
essential insight into chiral symmetry breaking [6].
However �0 times the Dirac operator has not received
such interest. There have been some studies of the so-
called propagator matrix, which is a lattice version of �0

times the Dirac operator in connection with the Glasgow
method [7] and in a random matrix form [8]. Such treat-
ments are not completely illuminating for the present
purposes since the key result is manifest only in the
continuum limit (or strictly speaking where the contin-
uum limit has been taken at least in the time direction). In
this limit, the eigenspectrum of �0 times the Dirac op-
erator provides insight into the physics of pion condensa-
tion in much the same way as the eigenspectrum of the
usual Dirac operator gives insight into chiral symmetry
breaking. To see how this comes about consider the par-
tition function of QCD in the presence of an isospin
chemical potential as given in Eq. (1) with �I solely
affecting the functional determinant. It is a simple exer-
cise in linear algebra to show that functional determinant
can be represented as

det

�
6D�m�

�I�0

2

�

� det� 6D�m�e��1=2�
R
�I
0
d�0

I tr
��0�D�m����0
I=2���

�1

; (2)

which shows that all of the effects of the chemical po-
tential can be represented as the exponential of an integral
of the trace of �0 times the usual Dirac operator. This
222001-2
trace can be evaluated via a sum over eigenvalues with the
functions subject to antiperiodic boundary conditions.

There are several features of the operator ��0� 6D�
m� � ��0

I=2�� which greatly facilitate the computation
of the trace. One useful property concerns the pairing of
eigenvalues. It is easily demonstrated that if � is an
eigenvalue of ��0� 6D�m��, then so is ��. Next notice
that the time derivative term in the operator is not multi-
plying any � matrices since �2

0 � 1. Moreover, �0
I also

does not multiply a � matrix but simply enters as an
additive constant and consequently has no role in deter-
mining the eigenfunctions; it merely shifts the eigen-
values. Together these imply that if ��0� 6D�m��j ji �
�j i, then ��0� 6D�m� � ��0

I=2��e
i!tj i � ���

��0
I=2� � i!�ei!tj i. This means that for any given ei-

genfunction, another can be generated with an eigenvalue
shifted by i! by simply multiplying by a time-dependent
phase. Note at this stage it is critical that the continuum
expression is used for the time derivatives. Moreover,
these phase factors cannot be arbitrary. Recall that the
eigenfunctions are constrained to be antiperiodic in time
with a periodicity of �. Thus, the eigenfunctions of
��0� 6D�m� � ��0

I=2�� can be grouped into families de-
noted by two indices: an index j representing an ‘‘intrin-
sic’’ eigenstate and an index n representing the phase
factor satisfying

j jn�1i � e�i2	t=��j jni;

�jn � �j �
�0
I

2
� i

�
�j

�
�

�2n� 1�	
�

�
;

(3)

where �jn, the eigenvalue of the operator, is broken up
into a real and an imaginary part. This decomposition is
unique if we impose the condition that �	 � �j < 	.
The form of Eq. (3) is highly suggestive. Indeed, if one
ignores the fact that �j is generically nonzero, it is
identical to the form for the case of free noninteracting
fermions; in the noninteracting case, �j simply represents
the energy of a mode. Here, �j, the real part of eigenstates
of �0 times the usual Euclidean Dirac operator, may be
considered as a quasienergy. Of course, the quasienergies
differ from the energies in the free fermion case in critical
ways; they depend on the gauge field configuration and
are not known analytically.

The trace can be evaluated by first summing over the n
for the eigenvalues (which is analogous to a usual
Matsubura sum [9] but here done for fields in the presence
of a time-dependent background); a sum over the intrinsic
j with �j � 0 is done subsequently:
t r
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I

2

�
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�
�

X
j

���j�
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2
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I

2
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2
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2

�
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�0
I

2

�
�i
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2

�
�
: (4)

Recall that the problem of interest is at zero temperature which corresponds to �! 1. As this limit is approached,
the asymptotic behavior of the hyperbolic tangent can be used to simplify the result of Eq. (4):
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t r

��
�0� 6D�m� �

�0
I

2

�
�1
�
�

X
j

���j�sgn��
0
I�
����j�

0
Ij � 2�j� � i2�j!�j�

0
Ij � 2�j�� �O�e����; (5)

where � represents a characteristic hadronic scale. Note that this becomes exponentially small as�! 1 and will have a
negligible effect. Inserting Eq. (5) into Eq. (2) yields

det� 6D�m� �I�0

2 �

det� 6D�m�
� exp

�
�i

X
j

�j���j���j�Ij � 2�j�
�
exp

�
�
2

X
j

���j���j�Ij � 2�j��j�Ij � 2�j� �O�e����
�
: (6)
In using Eq. (6) rather than the full expression in Eq. (4)
and neglecting the exponential, one is implicitly assum-
ing that the zero temperature limit for the physical quan-
tity of interest, the free energy, has a smooth behavior as
the zero temperature limit is approached. This is highly
plausible at finite chemical potential but has not been
directly proved from QCD.

Equation (6) provides an essential ingredient for the
resolution of the isospin Silver Blaze problem. The �
functions ensure that for any given gauge configuration
in the QCD functional integral, as T � 0 is approached,
the functional determinant is unchanged from its �I � 0
value, unless �j�Ij=2� is greater than the quasienergy of
the minimum positive quasienergy mode. Thus, Eq. (6)
explains how at zero temperature, functional determi-
nants can remain unchanged despite all of the eigenvalues
of the Dirac operator changing which is the core of the
Silver Blaze problem.

Of course, the value of the minimum positive quasi-
energy depends on the gauge configuration. A full reso-
lution of the isospin Silver Blaze problem depends on
showing that nothing physical occurs at zero temperature
unless �I � m	. Clearly this is the case, provided that
the minimum positive quasienergy is greater than or
equal to m	 for those configurations which contribute
to the functional integral at zero temperature. A formal
statement of this condition can be given in terms of the
spectral density (as a function of �) averaged over the
gauge conditions. We denote this spectral density as �̂����,

�̂���� �
X
j

!��� �j�

�
1

2�
@
@�

tr
��0� 6D�m� � ���1

� ��� 6D�m��0 � ���1� �O�e����; (7)

where �j is the jth quasienergy for a given configuration,
and the second equality follows from Eq. (5). We denote
averaging over gauge configurations with the notation:

hÔOiT;�I
�

1

ZI�T;�I�

Z
d
A�ÔO

�

�������det
�
6D�m�

�I�0

2

��������
2
e�SYM ; (8)

where the functional integral is evaluated with standard
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boundary conditions. The minimum relevant positive
quasienergy, �min, can be defined in the following way:
h�̂����i0;0 � 0 if and only if j�j< �min. The Silver Blaze
problem is then fully resolved if two conditions are met:

�i� h�̂����i0;�I
� h�̂����i0;0 for all �I < 2�min;

�ii� �min �
m	

2
:

To verify that these conditions are sufficient, use the
definition of the free energy in terms of ZI and
Eqs. (1) and (7) to note that 
@G�0; �I�=@�� �
2
R�I=2
0 d�h�̂����i0;�I

. Thus if T � 0, j�Ij<m	 and
the two conditions are satisfied, then free energy is inde-
pendent of �I and the expectation value of the isospin
vanishes.

It is straightforward to demonstrate that the two con-
ditions are in fact met in QCD, provided that one assumes
that no first-order phase transition occurs for T � 0 and
j�Ij<m	. This assumption is innocuous—it is highly
plausible a priori and is known not to occur in nature.
To demonstrate the validity of (i) use Eqs. (7) and (8) to
show that

@
@�I

h�̂����i0;�I
�



�̂����

�Z �I=2

0
d�0�̂���0�

��
0;�I

: (9)

Note that, the operator
R�I=2
0 d�0�̂���0� is manifestly non-

negative as is the measure in Eq. (8). In general, if
an operator ÂA is manifestly non-negative and it is aver-
aged over a non-negative measure and if hÂAi � 0, it
follows that hB̂B ÂAi � 0. Equation (9) and this general
condition together imply that �@=@�I�h�̂����i0;�I

� 0 if
h
R�I=2
0 d�0�̂���0�i0;�I

� 0. This in turn implies the validity
of condition (i) provided that h�̂����i0;�I

does not change
discontinuously at some value of �I (i.e., there is no first-
order transition).

To establish condition (ii), consider the charged pseu-
doscalar susceptibility $�

ps �
R
d4xhJ��x�J��0�i (with

J� � d�5u) as a function of �I. This susceptibility can
be represented as a functional integral; a straightforward
computation using techniques similar to those used above
enables one to express this functional integral in terms of
the spectrum of �0� 6D�m�:
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$�
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sinh����� �I
2 ��

�2���I�
cosh�����
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�
1

V

Z
d�

h�̂����T;�I
�1�O�e�����

j2���Ij
; (10)
where the first equality is exact and the second equality
exploits the fact that our interest is in the limit as T ! 0.
From the second equality in Eq. (10) we see that in the
T ! 0 limit, $�

ps diverges when ��I=2� is increased to the
smallest value of � for which the h�̂����i0;�I

is nonzero.
From condition (i) (previously demonstrated to hold) this
implies that $�

ps diverges when �I equals the smallest
value of � for which h�̂����i0;0 is nonzero, namely, �min.
On the other hand, $�

ps diverges in the infrared (at T � 0)
when the lightest excitation with the quantum numbers of
the 	� has an energy equal to �I. Clearly, if the state at
T � 0 and j�Ij<m	 were unchanged from the ordinary
vacuum, this lightest excitation is simply m	. However,
condition (i) implies that in the absence of a first-order
transition, the system does remain in the vacuum state
until�I � �min. Together these imply that �min � m	 and
condition (ii) is established.

In summary, the isospin Silver Blaze problem is re-
solved through the study of the spectrum of �0 times the
usual Dirac operator. As T ! 0, the functional determi-
nant for any gauge configuration is unchanged from its
�I � 0 value unless �j�Ij=2� exceeds the smallest value
of j�jj, where �j is the real part of the eigenvalue of the
operator. The resolution depends on the relevant gauge
configurations at T � 0 having a minimum j�jj greater
than m	=2. It was shown that this automatically happens
in QCD unless there is a first-order phase transition. It
would be interesting to see this picture emerging in lattice
simulations via studies of the spectrum of �0 times the
usual Dirac operator.

Finally, as noted above there are analogous Silver Blaze
problems associated with other chemical potentials. Of
particular interest is the one associated with the baryon
number: it is not plausible that we can understand nuclear
matter in terms of QCD if we do not understand what
happens below the phase transition to nuclear matter. The
baryon Silver Blaze problem for small chemical poten-
tials [i.e., for �B < �3m	=2�] is easily understood via the
same methods as used here. However, the baryon Silver
Blaze problem persists for all �B <MN � B � 923 MeV
where MN is the nucleon mass and B the binding energy
per nucleon of nuclear matter. Moreover, in the regime,
MN � B > �B > �3m	=2�, the functional determinants
of the relevant configurations are altered from their �I �
0 values. Presumably, in this regime there are cancella-
tions in the functional integrations due to the presence of
the phase factors in Eq. (6) which precisely compensate
for the increases in the magnitude of the determinants.
The understanding of how this comes about represents an
222001-4
essential challenge to resolving the baryon Silver Blaze
problem and thereby gaining insight into the first-order
phase transition to nuclear matter.
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