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We consider a system of partial differential equations describing two spatially distributed popula-
tions in a “predator-prey” interaction with each other. The spatial evolution is governed by three
processes: positive taxis of predators up the gradient of prey (pursuit), negative taxis of prey down the
gradient of predators (evasion), and diffusion resulting from random motion of both species. We
demonstrate a new type of propagating wave in this system. The mechanism of propagation of these
waves essentially depends on the taxis and is entirely different from waves in a reaction-diffusion
system. Unlike typical reaction-diffusion waves, which annihilate on collision, these ‘“‘taxis” waves can

often penetrate through each other and reflect from impermeable boundaries.

DOI: 10.1103/PhysRevLett.91.218102

Behavior in the form of solitary propagating waves is
typical for many spatially extended nonlinear dissipative
systems. Solitary waves that remain unchanged after
collision with each other are less typical and are known
only for a rather narrow class of nonlinear dissipative
media [1]. Here we demonstrate solitonlike behavior in a
class of waves, which can exist in population dynamics
models as a consequence of taxis.

Spatiotemporal dynamics of interacting populations
are often described in terms of reaction-diffusion systems
that take into account local dynamics and spread in space,
e.g., resulting from individual random motions. However,
one characteristic feature of living systems is their ability
to react to changes of the environment, and to move
towards, or away from, an environmental stimulus. The
importance of taxis has been recognized in modeling
various biological and ecological processes, including
propagation of epidemics, bacterial population waves,
aggregation in the cellular slime mold Dictyostelium dis-
coideum, and dynamics of planktonic communities and
of insect populations [2-10].

Here we consider a system of partial differential equa-
tions describing two spatially distributed populations in a
“predator-prey”’ relationship with each other. The spatial
evolution is governed by three processes, positive taxis of
predators up the gradient of prey (pursuit) and negative
taxis of prey down the gradient of predators (evasion),
yielding nonlinear ‘“‘cross-diffusion” terms, as well as
random motion of both species (diffusion). In this
Letter we consider the problem in one spatial dimension,
x, using the equations
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where P is the density of the prey population, Z is the
density of the predator population, D is their diffusion
coefficients, for simplicity considered constant, uniform,
and equal for both species, - (P %) and 2 (Z ¢) are taxis
terms [7], h_ is the coefficient of negative taxis of P on
the gradient of Z, and h, is the coefficient of positive
taxis of Z on the gradient of P.

We choose as local kinetics functions f(P,Z) and
g(P, Z) the Holling type III form used by Truscott and
Brindley [11] to describe the population dynamics of
phytoplankton, P, and zooplankton, Z:

F(P,Z) = BP(1 — P) — ZP/(P* + 1?),
- 2 /(p2 2 @)

g(P,Z) = yZP*/(P* + v*) — wZ
It is known that these kinetics demonstrate ‘“‘excitable”
behavior, and the reaction-diffusion system (1), 2. = 0,
with these terms has propagating solitary wave solutions
[11,12]. We now show how inclusion of the taxis terms can
alter the properties of such solutions.

Though predator-prey systems, with “intelligent” taxis
have been studied before, by means of individual-based
Monte Carlo simulations [13] and by using partial differ-
ential equations [14—16], our objective here is to isolate
and identify the specific role of the taxis terms in creating
novel behavior.
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Details of the model and numerical methods.—Unless
specified otherwise, we have calculated solutions to
Egs. (1) and (2) with the following parameter values: D =
0.04,» =0.07, 8 =1,y = 0.01,w = 0.004, h, = 1,and
h_ = 1. The ranges of values of 3, v, w were based on
those in [12].

Three finite difference schemes were used, differing
in their approximation of the taxis terms Lu =
Lu(x, t)%: scheme A, the central implicit scheme
[17]; scheme B, an ‘“upwind” explicit scheme; and
scheme C, an upwind implicit scheme (see, e.g., [18] for
the discussion of upwind schemes). The majority of cal-
culations were based on scheme C with discretization
steps dx = 0.1, 8t=5X10"3 for most figures or
scheme B with 6x =05 and 6r=0.01 for large-
scale parametric studies. Selected control calculations
used scheme B with smaller steps, down to éx = 0.01,
8t =4 X 107° and schemes A and C with éx = 0.01,
ot =1073.

Different mechanisms of wave propagation.—Figure 1
shows the stationary profiles of population waves in a
purely reaction-diffusion case 1(a) and with addition of
taxis terms 1(b)—1(f). The taxis terms significantly
change the shape of the profiles. The value of the pursuit
coefficient &, has a much more pronounced effect than
the value of the evasion coefficient #_. With only evasion
(h_ > 0) but no pursuit (hy = 0) added, waves tend to
retain the same shape as purely diffusive waves, with long
and smooth plateaus. The addition of pursuit (h, > 0)
adds distinctive features, e.g., nonmonotonic behavior of
predators around the front and/or the back of the wave.
Here we suggest a qualitative explanation of wave shape
change in terms of the pursuit term (%) only. Ahead of
the wave, the system is at its stable equilibrium. Consider
the effect of a local increase of the prey density P. The
resulting flux of predators to the area, described by the

taxis term with the coefficient i, will deplete the density
of predators in surrounding areas, and the conditions of
equilibrium will be violated. Decreased density of pred-
ators will temporarily encourage growth of prey, followed
by an influx of predators, and the same sequence of events
occurs progressively at each point in the spatial (x) direc-
tion, constituting a traveling wave. This requires only
taxis, but not diffusion terms, in Eq. (1). The excitable
kinetics of Eq. (2) strongly magnify a localized increase
of the prey population, through the prey-escape mecha-
nism (prey multiply faster than predators). This, of
course, is also essential for waves in purely diffusive
systems.

Taxis waves may have unusual spatially oscillatory
nonmonotonic, constant-speed fronts; see Figs. 1(g) and
1(h). Since these oscillations are small, they can be de-
scribed by linearized theory. In a steadily propagating
wave with speed ¢, variables P and Z depend on ¢ =
x — ct and satisfy

d’p d dZ dP
f(P,Z)+D "+ h — P2+ =0,

ag " " ag" e “u )
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The speed of the wave in Fig. 1(f) is ¢ = 0.3535, and the
steady-state values of the variables are Py = 0.05703,
Zo = 0.13480. With these parameters, a straightforward
calculation gives solutions in the form (P, Z)(¢) =
(Po, Zo) + Re[(Py, Z)e*],  |Py, Zi|l < [Py, Zpl, with
Ao = 1.9925 + 2.5014i. This predicts the half length
of oscillations along the ¢ coordinate of 7/Im(A;,) =
1.256, in good agreement with the observed shape; see
Figs. 1(g) and 1(h). This means that these oscillations are
not a numerical artifact. Note that in an ideal stationary
profile there will be an infinite number of oscillations, of
exponentially decaying amplitude.
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FIG. 1.

(a)—(f) The profiles of waves with D = 0.04 and different taxis coefficients 4. (at h_ = 0, h; = 1 solitary wave solutions

do not exist). The different shape of the profiles is evidence of the different propagation mechanisms involved. Note the oscillatory
onset of the pulse front when both 4, > 0 and h_ > 0. (g),(h) The oscillatory onset of the front of the pulse of (f), magnified. The
horizontal lines are at the steady state levels, (P, Zy). The theoretical value for the oscillation half-length is 1.256....
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FIG. 2. Space-time density plots showing interaction of
waves in (a) purely diffusive and (b) taxis cases. In both panels,
the length of the interval L = 300, and the time scale r €
[0, 2200]. Black corresponds to P = 0.9, and white to P = 0.

Solitary taxis waves, after a transient, adopt the same
shape amplitude and speed regardless of the details of the
initial conditions. In this they are similar to reaction-
diffusion waves and different from solitons in conserva-
tive systems.

Quasisoliton interaction of pulses.—We have found that
the system (1) and (2) has a region of parameters where
solitary waves interact as solitons. That is, they do not
annihilate, as reaction-diffusion pulses usually do, but
penetrate through, or reflect from, each other (since the
waves are indistinguishable, these two terms mean the
same thing). Figure 2 shows results of simulations in an
interval of length L with no-flux boundaries 2£|,_,; = 0
and %lx:O,L = (0. Two waves were initiated simulta-
neously, one at each end of the interval; the results are
shown as density plots. In the purely diffusive case,
Fig. 2(a), the waves annihilate at the collision. With the
taxis terms included, Fig. 2(b), the waves penetrate
through each other on collision, and are then reflected
from the boundaries.

Solitonlike interactions of solitary waves have been
observed in some reaction-diffusion systems with excit-
able kinetics, both in numerics [19-24] and in experi-
ments [24,25]. Such interactions are always limited to
narrow parameter ranges close to the boundaries between
excitable and oscillatory (limit cycle) regimes of the
reaction kinetics.

In contrast, Figs. 3(a)—3(e) show regions in the pa-
rameter space corresponding to different regimes of in-
teraction and propagation of taxis waves described by
Egs. (1) and (2). Both the existence of steady propagating
pulses and their ability to penetrate/reflect have a complex
relationship with the kinetic and propagation parameters.
However, it is quite clear that the ranges of parameters
providing solitonlike behavior are not in any sense nar-
row, and do not require proximity to the oscillatory
kinetics. Although large enough &, is typically sufficient
for propagation of waves, quasisoliton behavior requires
both A4, and h_. Figures 3(d) and 3(e) provide further
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FIG. 3. (a)—(e) Parametric regions corresponding to different
regimes of taxis waves. Solid circles: quasisolitons. Hollow
circles: annihilating pulses. Dots: there is no stable propagation
of pulses. Crosses: oscillatory local kinetics. (f) Wave propa-
gation velocity as a function of the square root of the diffusion
coefficient. Solid line and the upper row of symbols: y = 0.016,
hy =1, h_ = 5. Dotted line and the lower row: standard
parameter values. In reaction-diffusion systems, this depen-
dence is always a straight line.

evidence of a completely different mechanism of propa-
gation of taxis waves. Figure 3(d) shows that annihilating
and reflecting waves exist in absence of diffusion.
Figure 3(e) shows an example when propagating waves
do not exist in a purely diffusive medium, but only taxis
makes the propagation possible. Figure 3(f) shows depen-
dence of the wave propagation velocity on the diffusion
coefficient D. It is clearly different from the o« D'/2 law
obeyed by reaction-diffusion waves. There is a marked
change of this dependence near the transition between
annihilating and reflecting waves, which is yet more
evidence of a different mechanism of taxis waves, espe-
cially of quasisolitons.

Figure 4 explains the reflection of two colliding taxis
waves (reflection of a single wave from a nonflux bound-
ary is equivalent to a half of this picture). Predators are
low ahead of the prey wave, as they are attracted back-
wards by the prey density gradient. This backward gra-
dient of predators encourages the forward movement of
prey (see t = 31). The meeting of two prey waves creates
a high peak of prey density (t = 31, ..., 41). This attracts
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predators, which abandon the margins of the collision
zone (t = 36,...,41). Prey escapes from the center of
the collision zone towards the margins abandoned by
the predators. These events invert the gradients of the
populations and recreate front structures on the margins
of the collision zone (¢ = 41, .. ., 46), which then generate
two new, “reflected” taxis waves (¢t = 51). They subse-
quently restore their normal amplitude (not shown).
Reflection is stipulated by interaction of both the pursuit
and evasion taxis terms, forming a positive feedback
loop. This explains why the quasisoliton regions are
bounded away from the coordinate axes on Figs. 3(a),
3(d), and 3(e).

The interplay and positive feedback between the two
taxis terms can also be elucidated by considering a simple
linear analogue of Egs. (1):

P 9%z 0Z 9P
— =h_—=, —=—h,—, 4
at ax2 ot T ox? “)

which are obtained from (1) by putting f,, = D = 0 and
removing nonlinearity from the taxis terms. System (4)
is equivalent to a Schrodinger equation for ¢ = hﬂr/ P+
ih'/27. This is consistent with oscillatory fronts of taxis
waves and their ability to reflect from each other. The role
of nonlinearities appears to be selecting a unique ampli-
tude and shape of propagating waves, and restricting,
compared to (4), values of h. that allow reflection.
Adding diffusion in (4) destroys propagating waves, but
not necessarily in (1) where its dissipative effect may be
compensated by the nonlinear kinetics.

In conclusion, we have shown that the inclusion, in a
predator-prey model, of terms representing taxis of each
species on the gradient of the other can have a significant
effect on the mechanism, structure, and speed of prop-
agating waves in the system. Taxis terms can change the
character of interactions between waves, allowing them
to penetrate/reflect, rather than annihilate. Some experi-
mental evidence of this has been observed in bacterial
populations [26]. Though our motivation has been preda-
tor-prey systems, the existence of these waves, whose
character is quite different from the more widely studied
nonlinear waves in ‘“‘simple’ reaction-diffusion systems,
may be expected to have significance for other physical
systems.

This study was supported by EPSRC Grant No. GR/
S08664/01.
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