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We report the realization, using nuclear magnetic resonance techniques, of the first quantum
computer that reliably executes a complete algorithm in the presence of strong decoherence. The
computer is based on a quantum error avoidance code that protects against a class of multiple-qubit
errors. The code stores two decoherence-free logical qubits in four noisy physical qubits. The computer
successfully executes Grover’s search algorithm in the presence of arbitrarily strong engineered
decoherence. A control computer with no decoherence protection consistently fails under the same

conditions.
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A computer that uses the laws of quantum mechanics
to store and manipulate information could in theory
perform certain tasks such as searching [1] and factoring
[2] with incredible efficiency. The most critical problem
that must be solved to make quantum computing possible
on a useful scale is decoherence, the inevitable process of
entanglement between a quantum computer and its envi-
ronment. Decoherence causes the superposition states that
carry information within the computer to decay rapidly.
Several solutions to the decoherence problem have been
proposed (for a review, see [3]). One technique, quantum
error avoidance, calls for information within the com-
puter to be carried exclusively by quantum states that are
not adversely affected by decoherence [4—7] (for a review,
see [8]). Here we present the first experimental proof that
a complete quantum computation can be protected
against decoherence [9]. Using quantum error avoidance,
we have constructed a nuclear magnetic resonance quan-
tum computer [10-12] which is unaffected by certain
types of decoherence. Our computer successfully executes
Grover’s quantum search algorithm [1] in the presence of
arbitrarily strong engineered decoherence. A control
computer with no decoherence protection consistently
fails under the same conditions.

Decoherence is typically characterized by the decay of
off-diagonal elements in a system’s density matrix p.
Formally, decoherence takes the system from state p; to
a state p; = ZdEdp,-EJ; where the Kraus operators Ej;
describe transformations that may result from the
system-environment coupling (they satisfy ZdEj,Ed =
I = identity) [3,13].

When the coupling between a quantum system and its
environment possesses an element of symmetry, some of
the system’s states will be immune to decoherence [4—8].
These states span a decoherence-free subspace (DFS).
The quantum computer we have constructed comprises
two decoherence-free logical quantum bits (qubits [3]),
encoded in the DFSs of four noisy physical qubits. The
code protects against multiple-qubit errors [7]: To satisfy
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the symmetry condition for the existence of DFSs, we
assume the system-environment coupling affects certain
pairs of qubits rather than affecting each qubit indepen-
dently. Note that this error model is different from the
popular “collective decoherence” model [4-6].

The multiple-qubit errors model is relevant to a number
of physical systems recently used as quantum computers.
For example, dipolar interactions, which contribute to
the decoherence of a number of systems, reduce to a
multiple-qubit error process under certain conditions.
Decoherence-free states arising in this way have already
been exploited in NMR studies of large proteins [14].
(More examples are listed in [7].) However, the object of
this work is to demonstrate DFS protection against
multiple-qubit errors, not to demonstrate specific resis-
tance to the natural decoherence processes of liquid state
NMR. We chose an error model that supports a relatively
simple DFS and that affords us complete control of the
decoherence strength, and as such it is not related to our
system’s natural decoherence.

Specifically, the code our computer uses resists errors
of the form [15]

Eq = agoli 1314 + ag 1 X1 Xol3ly + agol 1, X3X,
+ ad,3X1X2X3X4, (1)

where X, indicates that physical qubit n € {1,2, 3,4} is
flipped and I, indicates that it is unaffected. There are
four DFSs for this set of errors [7]. Each DFS is a
simultaneous eigenspace of the operators {I,1,151,
X1X2I3I4, 1112X3X4, X1X2X3X4} with eigenValueS *1.
The following states are an orthonormal basis for one
DFS:

|00)! = (10000) + [1100) + |0011) + [1111))/2,
[01)! = (11000) + [0100) + [1011) + [0111))/2,
[10)! = (|0001) + [1101) + [0010) + [1110))/2,
[11)! = (]1001) + [0101) + [1010) + [0110))/2.
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These can be used as basis states for two decoherence-
free logical qubits and are labeled as such. The other three
DFSs are related to this DFS by sign changes. For ex-
ample:

|00)2 = (]0000) + [1100) — [0011) — [1111))/2,
[00); = (0000) — [1100) + [0011) — [1111))/2,
[00); = (J0000) — [1100) — [0011) + [1111))/2,

where superscript numerals indicate to which DFS a state
belongs. The remaining basis states of DFSs 2—4 are
obtained by applying similar sign changes to the other
states of DFS 1.

The code uses all four of these DFSs in classical
parallel. An arbitrary state of the two logical qubits,
l4), = al00), + b|01), + c|10), + d|11), where |a|*> +
|b|? + |c|*> + |d|> = 1, is encoded in the density matrix
Py, describing the four physical qubits according to

4
iy, = 1Ll = eyl )
i=1
where ), = al00); + bl01)) + c[10); + d|11); and
c; = 1/4. Note that only the component of the density
matrix that deviates from identity is described above (the
identity portion of p is immutable and unobservable
during any NMR experiment [3]).

It should be noted that in general a quantum super-
position of states from different DFSs is not decoherence
free. This is because the DFSs are eigenspaces of the E;
operators, and for a given E; each DFS may have a
different eigenvalue. However, the encoding of Eq. (2)
uses the DFSs in classical superposition only and pj, is
therefore unaffected by the errors described by Eq. (1). It
can be shown that Egly); = Ay;l); where Ay; is a
constant [7]. It follows that, when the errors of Eq. (1)
occur:

4
pr=SEipEy =S S cENp L E]
d d i=l1

4 4

=> ci(ZAd,iAz,i>|¢>z<¢|'L = > iyl
i=1 d i=1

where ¢} = ¢;> A, iAy ;- Thus the net effect of the errors
is a change in the relative weights ¢/ of the different DFSs:
The logical qubit information in each DFS is intact. For
the errors we implement experimentally, it is always the
case that } ;A,,;A7; = 1 so that the errors have no effect
whatsoever (c; = ¢; so that p, = p). This simplifies in-
terpretation of the experimental results but is not essential
to the code’s performance.

Pulse sequences that perform logic gates on the two
encoded qubits were developed using methods derived in
[16] and will be described in detail in a subsequent
publication. Unfortunately the computer leaves the DFS
code during gate sequences. It has been shown that this
class of DFS codes can function as active quantum error
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correction codes against errors occurring during qubit
manipulation [16], a property that can be used in future
implementations to detect and correct such errors.

Before any computation, the computer’s two logical
qubits are initialized by temporal averaging [17] to the
state |00),. The code maps this logical qubit state to the
following state of the four physical qubits:

Piooy, = (10000%0000] + [1100)(1100] + [0011)(0011]
FTITIXIT11]) /4. 3)

This density matrix can be decomposed into a sum of
tensor products of the 2 X 2 identity matrix / and the
Pauli matrix Z.

piooy, = (LW l3ly + Z1 231314 + 111,237,
+ 7,2,757.)/16.

The I,1,1514 term can be neglected and each of the re-
maining three can easily be prepared from the system’s
equilibrium state using standard pulsed NMR techniques
[18]. During a quantum computing experiment, the com-
putation is repeated three times, each time prefaced with a
pulse sequence that prepares a different one of Z,Z,131,,
1,1,757,, and Z,Z,7Z57Z,. The three results are added
together and because computation is a linear quantum
operation, the summed result corresponds to a computa-
tion starting from the state |00); .

Because the code uses states from four DFSs in classi-
cal parallel, our ensemble computer does not use true
pseudopure states. We chose this approach to reduce the
number of temporal averaging steps, facilitating a thor-
ough test of the computer’s resistance to decoherence.
In fact, the three temporal averaging steps we perform
are a subset of the 15 required for a pseudopure state
implementation.

We use our computer to perform Grover’s quantum
search algorithm [1] (Fig. 1). The algorithm’s purpose is
to retrieve, from an unsorted list, the single item that
satisfies a given criterion. Grover’s algorithm is highly
efficient, requiring only @(+/N) steps to search a list with
N items; a classical algorithm requires O(N) steps. In our
implementation of Grover’s algorithm, the logical qubit
basis states |00),, [01),, |10);, and |11); correspond to the
four items in our list. We choose state |11); to correspond
to the item we wish to retrieve. The algorithm’s first step is
to prepare the register in an equal superposition of its
basis states, |¢), = (1/2) X} _o >} _o |x1x2),. The rest of
the algorithm is an iterative process that increases the
amplitude of the sought-after state (|11);) until it is the
dominant part of the superposition. For our two-qubit
register, only one iteration is required. Finally, the logical
qubits are measured; an outcome of |[11); indicates that
the algorithm has been successful. (We have also used
our computer to implement the improved Deutsch-Jozsa
algorithm described by Collins et al [19], with similar
results.)
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FIG. 1.

Running Grover’s search algorithm on an error-avoiding quantum computer. Time runs from left to right. Decoherence-

free logical qubits are represented by horizontal lines. Engineered decoherence is applied at nine points during the experiment to

test the computer’s resistance.

Our computer is based on the isotope-substituted gly-
cine molecule shown in Fig. 2 [20]. Each of the molecule’s
four spin-1,/2 nuclei is used as a physical qubit. The errors
of Eq. (1) are applied artificially according to the follow-
ing protocol. At each of nine points in the experiment
(indicated in Fig. 1), error operator X;X,/31, is applied
with probability e, then error operator 111,X3X, is applied
with the same probability. To simulate the effect of a
microscopic random process, the experiment is performed
2048 times, each time with different randomly selected
errors, and the results are averaged, giving the overall
decoherence process a nonunitary, deterministic charac-
ter. The resulting decoherence increases with the error
probability e, becoming strongest at e = (.5. Formally,
the operators describing our engineered decoherence are
EO = (1 e)l 121314, \/6(1 - e X1X21’514, E2
\e I 12X3X4, and E'; = €X1X2X3X4 [NOte that
for these error operators, it is clear that > ;E;p|oq), E! =
P00y, » Where pgg, is defined by Eq. (3).]

We have repeated the Grover algorithm experiment in
the presence of nine different levels of engineered deco-
herence ranging from ¢ = 0 to e = 0.5. At all values of e,
the resulting NMR spectra contain little distortion and
clearly describe the final state of the qubit register as
|11);, indicating the computer has successfully executed
the algorithm. To quantify the resistance of each compu-
tation to the applied decoherence, we measured the inte-
grated absolute intensity of the final signal relative to the
e = 0 experiment. The dependence of signal intensity on
e is different for each of the experiment’s three temporal
averaging steps, and we have chosen to analyze the results

FIG. 2. Isotope-substituted glycine molecule. Spin-1/2 nuclei
used as physical qubits are numbered 1-4. The chemical shifts
of 3C spins 1 and 3 differ by 16.5 kHz on a 500 MHz ('H
resonance frequency) NMR spectrometer.
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of the steps separately (Fig. 3). We observe only small
losses of signal, and these cannot be attributed to any
fault in the DFS encoding. The losses are predominantly
due to imperfections in pulses used to implement the
engineered decoherence, evidenced by a linear decrease
in signal with increasing e.

As a control, we have repeated these experiments on a
quantum computer that does not use error avoidance. The
unprotected computer is similar to the error-avoiding
computer, with only the following changes: Spins 1 and
4 (Fig. 2) serve directly as qubits (in place of the two
logical qubits), the temporal averaging scheme prepares a
different (pseudopure) initial state, and different pulse
sequences are used to implement quantum logic gates.
The same engineered decoherence is applied and the
computer executes the same algorithm as in the error-
avoiding computing experiments. As expected, the un-
protected computer’s signal intensity decreases rapidly
with the error strength e. We observe effectively no signal
when e = (0.3 and the result of the algorithm is incorrect
or unreadable for e = 0.2.

The DFS encoding our error-avoiding computer uses
has an overhead cost, but the results show it is small
compared to the protection it affords. The pulse sequences
that perform logical operations on the error-avoiding
computer are more complex than for the unprotected
control computer, so the error-avoiding computer is
more vulnerable to signal loss due to pulse imperfections
and natural spin relaxation. This is why, when signal
intensities from the two computers are compared on an
absolute scale (dotted and dashed lines in Fig. 3), the
unprotected computer gives the stronger signal for low
values of e. However, the unprotected computer consis-
tently fails when e = 0.2, while the error-avoiding com-
puter gives the correct result for all e. The overall fidelity
of the Grover algorithm is governed by the temporal
averaging step that is least tolerant to decoherence
[Fig. 3(b)], and for this step the error-avoiding computer’s
signal is the more intense for e = ~0.15. Even at this low
level of decoherence, the protection afforded by DFS
encoding outweighs the overhead involved.

In summary, we have provided the first experimental
demonstration of a complete quantum computation in
the presence of strong decoherence [9], thus proving
that quantum error avoidance based on DFSs can very
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Experimental results in the presence of decoherence, for both the error-avoiding and unprotected computers running

Grover’s algorithm. Results from the three temporal averaging steps appear separately in (a) Z,Z,1514, (b) Z,Z,7Z5Z,, and
(c) I11,Z5Z,. The integrated absolute intensity of the output signal measured at the end of Grover’s algorithm is charted as a
function of decoherence strength e. For some values of e, the signal from the unprotected computer is phase inverted with respect to
the correct output signal: In such cases we report a negative signal intensity. Square and round points are experimental data from
the error-avoiding and unprotected computers, respectively, with each dataset normalized to the intensity of its first point. Solid
lines are linear regressions. Dashed curves are a theoretically predicted intensity function, S = (1 — 2¢)" with n = 6 in (a),(c) and

n = 12 in (b), obtained by predicting the unprotected computer

’s state at each of the experiment’s nine decoherence points and

counting the number n of error operators which could change the system’s state. Dotted lines are signal intensities from the error-
avoiding computer normalized to the intensity of the unprotected computer’s ¢ = 0 signal; the signals in (a) were recorded on

different nuclei and cannot be compared in this way.

effectively protect qubits from decoherence during the
execution of a quantum algorithm. We have implemented
Grover’s search algorithm on two two-qubit quantum
computers, one error-avoiding and one unprotected.
While the unprotected computer fails when exposed
to even a moderate amount of decoherence, the error-
avoiding computer is successful in the presence of the
strongest possible decoherence. This demonstration is a
proof of the concept of quantum error avoidance and
suggests that DFS encoding will play an important role
in future experimental implementations of quantum al-
gorithms in the presence of decoherence.
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