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When photons are sent through a fiber as part of a quantum communication protocol, the error that is
most difficult to correct is photon loss. Here we propose and analyze a two-to-four qubit encoding
scheme, which can recover the loss of one qubit in the transmission. This device acts as a repeater, when
it is placed in series to cover a distance larger than the attenuation length of the fiber, and it acts as an
optical quantum memory, when it is inserted in a fiber loop. We call this dual-purpose device a

“quantum transponder.”
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Storing qubits for indefinitely long periods of time is a
critically important task in quantum information pro-
cessing. Such a memory is needed whenever quantum
teleportation protocols or feed-forward mechanisms are
invoked. While photons are ideally suited for the trans-
mission of quantum information, storing them is very
difficult. Currently, techniques for mapping quantum in-
formation between photons and atomic systems are being
developed [1-3]. Obviously the simplest quantum mem-
ory devices for photons are an optical fiber loop or a ring
cavity. Recently, Pittman and Franson used a Sagnac
interferometer to develop a quantum memory device
for photons that is robust to dephasing [4]. They con-
cluded that it is the photon loss that typically restricts
the storage time.

In this Letter, we present a cyclic quantum memory for
photons that can deal with photon loss. The idea is to use a
delay line loop endowed with a small linear optical
quantum computing (LOQC) circuit [5,6] that runs an
error-correction code (ECC) over and over again on
the loop, as depicted in Fig. 1. When multiple error-
correcting circuits are placed in series, it allows the
transmission of photons over a distance larger than the
attenuation length of the fiber. A quantum repeater is
typically a device that executes quantum purification
and swapping protocols, with the goal of achieving re-
mote, shared, entanglement [7-9]. Here, in contrast, we
define a ““quantum transponder” to be a simpler device;
one which employs error correction to relay an unknown
quantum state down a quantum channel with high fidel-
ity. For quantum key distribution schemes such as the
Bennett-Brassard 1984 (BB84) scheme [10], only a tran-
sponder is required for long-distance key transfer.
However, we note that if the fidelity of the transponder
is sufficiently high, we can also use it to distribute en-
tanglement by relaying, say, one half of an entangled pair.

Let us first consider our error-correcting code. We use a
two-to-four one-error—correcting scheme for protecting
the data against photon loss. That is, we encode two qubits
into four qubits such that the resulting code is capable of
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recovering from the loss of one photon. The encoding is as
follows:

[00) — (10000) + |1111))/+/2,
|01) — (J0110) + |1001))//2,
[10) — (|1010) + [0101))//2,
[11) — (]1100) + |0011))/~/2.

(D

This code was first introduced in 1997 by Grassl, Beth,
and Pellizzari [11], and it can be implemented using the
simple quantum circuit shown in Fig. 2.

The difference between this code and the usual error-
correcting codes based on syndrome detection is that we
do not destroy the ancillae. In other words, we recover
from a single-photon loss without losing any of the four
qubits. The error-correction process is shown in Fig. 3,
where we assumed that the loss has occurred in the lower-
most qubit (the conditional error-correcting operator con-
sisting of a combination of o, and o, acts on the lower-
most qubit mode; here, o,, o,, and o, are the Pauli
matrices). Similar circuits work for photon loss in the
other three modes.

We can demonstrate how this algorithm works by
studying its action on one of the code words of the code
of Eq. (1). For example, consider the code word |i,) =
%(lOllO) +11001)), and suppose that the last qubit is
lost (in accordance with Fig. 3). The state of the system

is given by the following density operator, p; =
1(1011)(011] + [100)(100]), which is obtained from the

release
- ——
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FIG. 1. A cyclic quantum memory using a quantum tran-
sponder (T) based on quantum error correction. Placed in series
these devices act as simple quantum repeaters.
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FIG. 2. Two-to-four qubit encoding, which converts the input
|g1, q») into a four-qubit state, as given in Eq. (1).

initial state |i¢) by tracing out the last qubit. In what
follows, it is easier to consider the mixed state p; as a
probability distribution over the pure states, instead of a
density matrix. Thus the mixed state after photon loss can
be written as p; = {(|011), 1), (/100), })}.

The quantum nondemolition (QND) device that
signals the loss of the last qubit is followed by a qubit
state preparation device (photon gun) that substitutes
the missing qubit with a new qubit in the ground
state |0). The new density operator is then p, =
{(0110), 1), (11000), })}. Including the two ancilla bits,
the total system is in the mixed state p; = p, ®
[00)(00] = {(|0110)]00), 1), (11000)00), })}. After apply-
ing the Hadamard transform on the ancilla bits, this
becomes

pa = {(G10110)(|00) + [01) + [10) + [11)),3),
(11000)(100) + [01) + [10) + [11), 1)} (2)

The four controlled-o, (CNOT) and controlled-o, (CZ)
operations, followed by the Hadamard transform on
the ancilla bits, then yields the mixed state ps5 =
{(3[(I0110) + [1001))[00) + (|0110) = [1001)[10)], 5),
(%[(IIOOO) +10111))[01) + (]1000) — [0111})]11)], %)}.

Finally, the measurement outcome of the two ancillae
determines the error-correcting operator on the last qubit.
These conditional operators are listed in Table I. Note that
after the measurement of the ancillae, the result is always
a pure state. Furthermore, all the results are equally
likely, so this process does not reveal any information
about the original encoded state. It follows immediately
from Table I and Eq. (1) that this will correct the loss of
the photon for this particular code word.

To see how the loss of a photon is connected to the loss
of a qubit, let us consider the loss of a photon in the
polarization basis. Suppose a quantum state of two qubits
is described as ¢;|HH);, + ¢,|VV),. Now suppose the
loss of a photon happened in the first qubit. The loss can be
described as |0); (¢ |H)2||h)en + €21 V)2|V)en), where |0) is
the vacuum state, the subscript “en” denotes the Hilbert
space of the environment, and &, v are the environment
variables. Since the loss can happen in two distinct ways
depending on which of the polarization modes lost the
photon, the state of the second qubit is a mixed state
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FIG. 3. Quantum transponder that recovers photon loss (here,
for example, in the lower-most qubit) using two ancilla pho-
tons. The QND box represents a single-photon quantum non-
demolition measurement device, followed by a single-photon
source depicted by the gun-shaped polygon. H represents the
Hadamard gate. Four CNOT (controlled by the first ancilla) and
four €z (controlled by the second ancilla) gates are followed by
another Hadamard gate and measurement on the computational
basis for each ancilla. The final one-qubit operations are for the
channel where the loss has occurred, and depend on the
measurement results; see Table 1.

lci 1P| H)YH]| + |c,|?|V)X V]| (after tracing out over the en-
vironment variables), not a pure state c;|H) + c,|V).
From this argument, we may conclude that photon loss
has the same effect as simply tracing out over the corre-
sponding qubit. A similar argument also holds for the
photon loss in the ‘“dual-rail” scheme where the qubit is
denoted by the presence of a single photon in one rail or
the other [5]. The two distinct ways of photon loss corre-
spond to which dual-rail mode lost the photon.

In the remainder of this Letter we will consider optical
implementations of this error-correcting code, where the
qubits are encoded in two-mode single-photon states.
These may either be two spatial modes or two polariza-
tion modes [5,12—14]. However, when we send our qubit
through a fiber, we are encoding the information in the
polarization of a photon, i.e., |[H) — [0), |V) — |1).

When we send a photon through an optical fiber of
length d, the probability of successfully transmitting
the photon is given by p(d) = exp(—ad). Here, the ab-
sorption coefficient of the fiber is given by «, which is a
property of the fiber. The best fibers have an absorption
length 1/ of about 30 km. We wish to overcome this

TABLE I. The measurement outcomes of the ancillae and the
conditional error-correcting operators that restore the state of
the encoded qubits.

Observation Projected state Correcting operation
[00) [0110) + [1001) 1
[01) [1000) + |0111) oy
[10) [0110) — [1001) o,
[11) [1000) — |0111) 0.0,
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length restriction with the ECC and the linear optical 100 T
scheme for implementing two-qubit gates. 0.95
The ECC described above can recover two qubits,
given the loss of a single-photon. With a perfectly working 0.90
ECC, the probability of losing zero or one photon in the &
fiber over a distance d is given by p, = p* + 4p*(1 — p) . 0.85
Using p; we can calculate an effective absorption length 0.80
for the ECC, or equivalently o'(a, d) = —In(p;)/d = ’
3a — In[4 — 3exp(—ad)]/d. Since our ECC encodes 0.75
two qubits, we compare o’ with 2a, to see if our code T

is improving the situation or not. Define the function
f(x) with x = ad, such that o'/2a =3/2 — In[4 —
3exp(—x)]/2x = f(x). When x <In(3) = 1.1, f(x) <1,
our ECC (transponder) is increasing the effective absorp-
tion length for the qubits we are trying to transmit. So, if
we make d < In(3)/a the transponder allows us to trans-
mit qubits with higher fidelity than is possible without it.
Note that lim,_,,f(x) = 0, so the absorption length can be
made arbitrarily large by making d smaller. However, by
decreasing d we need to introduce more gates, and the
gates introduce errors.

We employ the linear-optical scheme introduced by
Knill, Laflamme, and Milburn (KLM) [5], to implement
our quantum circuit. As a consequence, all one-qubit
gates can be implemented with minimal errors. Further-
more, we can execute a controlled-NOT (CNOT) or con-
trolled-sign (CZ) operation efficiently by using ancilla
qubits. For 2n ancillae, a CNOT or CZ gate can be success-
fully executed with probability [n/(n + 1)]?, assuming
all single-photon guns (SPG) and photon detections work
perfectly. We are therefore sending our qubits in the
polarization basis, but we are doing error correction in
the dual-rail basis. This is not a problem because we
can use a polarizing beam splitter and appropriate polar-
ization rotators to convert between the two bases. In
particular, every KLM-based gate has an equivalent im-
plementation for polarization-encoded qubits.

With imperfect gates, our equation for r = a’/2a be-
comes

r=

a'(x,n) _ In(psp,) 1 1

where p, is the probability that all the gates in the quan-
tum transponder work correctly. We can see that for p, <
1, the minimum of r is no longer at x = 0 (where the
transponder stations are placed back-to-back), since the
second term is infinite at that point. Figure 4 is a contour
plot of Eq. (3) as a function of x and p,. Note that the
losses from the gates that do the encoding and decoding of
the qubits are one-time losses, and become relatively
unimportant for long transmission lines. Noting that
there are four CNOT and four CZ gates in each transponder,
we can write p, = [n/(n + 1)]'®. The value of n for which
the minimum drops below one is at n = 56. So we need at
least 112 ancilla qubits at each gate for the transponder to
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FIG. 4. A contour plot of r = a/(x, n)/2a, the relative ab-
sorption coefficient, as a function of x, the normalized dis-
tance, and the success probability of the transponder, p,. Note
that the minimum of the r = 1 curve is at p, = 3/4.

transmit qubits more reliably than the fiber without error
correction.

Let us now consider the probability of success for a
single quantum transponder with inefficient detectors.
Suppose, as in Fig. 3, we use the QND device proposed
by Kok et al. [15]. This device operates by teleporting the
input photon to the output mode, using coincidence count-
ing in a CNOT-operated Bell measurement. The photon
loss is then signalled by finding a single detector click. In
this case, there is always a photon in the output mode, and
we do not need the four single-photon guns.

As shown in Fig. 3, the transponder consists of two
SPGs, four QND devices, six one-qubit gates, four CNOT
gates, four CZ gates, and two photodetectors (see the first
row in Table II). The single-photon QND measurement
can be accomplished with two SPGs, two CNOT gates,
two Hadamard gates, and two photodetectors. The first
Hadamard and CNOT gates are for Bell-state preparation,
and the Bell-state measurement can be made by a CNOT
and a Hadamard and measurements in the computational
basis. For each CNOT gate, we have two one-qubit gates
and a Cz gate. Given that we use 2n ancilla photons for
each cz gate, we need to have 2n SPGs and 2(n + 1)
photodetectors. Altogether, we need to have 38 one-qubit
gates, 16 CZ gates, 10 + 32n SPGs, and 10 + 32(n + 1)

TABLE II.  Number of single-photon guns, QND devices,
CNOT, CZ, one-qubit gates, and photodetectors per transponder.
(i) Each QND device consists of two SPG, two CNOT, and two
photodetectors. (ii) Each CNOT can be considered as a CZ and
two one-qubit gate. (iii) Each €z requires 2n ancilla photons
and 2(n + 1) photodetectors (PD).

ECC SPG QND cNOT ¢z One PD
2 4 4 4 6 2
) 2+8 0 4+8 4 6+8 2+38
(ii) 10 0 0 16 14+24 10
(i) 10+32n 0 0 16 38 10+32(n+1)
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FIG. 5. The probability of transponder success p, as a func-
tion of the number of ancillae n. The top graph (a) is for
detector efficiency n = 1, and the descending graphs have
detector efficiencies (b) 1-107%, (c) 1-107>, and (d) 1-107%3,
respectively. A typical value that p, needs to exceed is 0.75
(dashed line).

photodetectors. Hence the probability of success for the

transponder is given by p, = p3 plS ploi32nylo+3n,

where pones Puwo» and pspg are the success probability of
the QND measurement, the one-qubit gate, the two-qubit
(cz) gate, and a SPG, respectively. Note that 1 denotes
the quantum efficiency of the photodetector, where 10 +
32n detectors among 10 + 32(n + 1) should click for
perfect gate operations.

Now let us assume that the number of ancilla photons
used for a two-qubit gate is 2n, which gives p,, =
n?/(n + 1)%. Hence, the number of ancilla photons may
be optimized for a given quantum efficiency of the photo-
detectors and the success probability of the single-photon
guns. Let us assume for now that p,,. = pspg = 1. Then
p, is given by

— 516 10+32n —
Pr = PwoT "= (

For example, if 1 — = 1073, taking n = 16 yields p, =
0.14. With n = 160 we have p, = 0.78. A typical value
that the success probability needs to beat is 0.75. In Fig. 5
we plot p, as a function of the number of ancillae with
different detector efficiencies 7).

In conclusion, we have presented an error-correction
scheme that encodes an unknown two-photon state into
four photons, up to one of which can be lost in the trans-
mission. This device acts as a simple repeater or quantum
transponder when it is placed in series, and it acts as an
optical quantum memory when it is inserted in an optical
loop. Since the absorption length for two photons in a
fiber is 1/(2a), the storage time is given by T, = 1/(2av),
where v is the speed of light in the fiber. With error
correction we can increase the storage time to 7,/r. We
gave a quantitative analysis of the behavior of this quan-

n 32
10+32n 4
— 1) Ui . C))
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tum memory in several situations, deriving values for the
optimal length of the loop, and characterizing the per-
formance in the presence of detector losses.

Using this scheme, the conversion between flying qu-
bits and stationary qubits in memory is not necessary, as
the memory and quantum logic gates are composed of the
same optical resources. The delay line, when rolled out, is
a fiber quantum communication line with simple LOQC
transponders, suitable for the BB84 quantum key distri-
bution protocol [10].
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