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Incommensurate Spin Density Waves in Iron Aluminides
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Neutron diffraction in Fe(Al) reveals incommensurate spin density waves (SDWs) in alloys known to
be spin glasses. The wave vectors for crystals of Fe(34Al), Fe(40Al), and Fe(43Al) show n varying from
11 to 6 for g =2mw(h = 1/n,k = 1/n,1 * 1/n)/ay, where (h, k, I) and a, characterize the parent bcc
lattice of the CsCl structure. The magnetic reflections are present far above the spin-glass freezing
temperatures. These SDWs keep the spins on nearest-neighbor Fe atoms close to parallel, in contrast
with SDWs in Cr, which keep nearest-neighbor spins close to antiparallel.

DOI: 10.1103/PhysRevLett.91.217201

We report neutron diffraction results showing antifer-
romagnetic order in iron aluminides. The structure could
be generated by a set of spin density waves (SDWs) with
wave vectors ¢ = 2m(+1 +1 +1)/4, where qq is the
lattice parameter of the parent bee lattice underlying the
B2(CsCl) structure of the atomically ordered iron alumi-
nides, Fe(22Al) to Fe(55Al). The denominator n takes
values from 11 to 6 as the concentration of Al is increased
from Fe(34Al) to Fe(43Al). The continuous variation of n
with concentration and temperature shows the wave vec-
tors are incommensurate with the lattice.

Iron aluminides have been the focus of recent discus-
sions of the limits to density functional theory in the
local spin density approximation [1,2]. We present argu-
ments that affirm the statement “SDWs and antiferromag-
netism are complex subjects with pervasive ramifications
in condensed-matter physics” [3].

In 1958, Sato and Arrott predicted an antiferromagetic
state for these compositions [4]. By 1980, probably every-
one, including them, became convinced that this system
is best described by the term spin glass, for, indeed, these
alloys have all the properties associated with that term,;
see Shapiro [5]. Peaks in the temperature dependence of
the magnetic susceptibility that signal the onset of spin-
glass freezing have been observed [6—8].

A dramatic transition from paramagnetism to ferro-
magnetism back to paramagnetism with decreasing tem-
perature occurs for Fe(30.5Al). The inverse Curie
temperature is 180 K. A “spin-glass state’ appears below
80 K. Sato and Arrott attributed this behavior to compe-
tition between nearest neighbors with ferromagnetic
(FM) coupling and third neighbors with antiferromag-
netic (AFM) coupling, where the Fe(I) atoms on opposite
cube corners interact by a 180° superexchange when the
center site of the bcc cube is occupied by an Al atom.
Their predicted long-range antiferromagetism was not
seen in neutron diffraction studies of their Fe(Al) alloys
[9] nor in detailed studies of Fe(30.5A1) [10,11].
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PACS numbers: 75.25.+z, 75.30.Fv, 75.50.Bb

The CsCl structure naturally divides into two simple
cubic lattice complexes, one filled by Fe(I) atoms while
the predominantly Al sublattice has the remaining Fe(II)
atoms occupying sites at random, leading to frustration of
the spin system in trying to resolve the competition
between the two interactions.

In Fe;Al the Al sublattice itself becomes ordered,
breaking into two fcc lattice complexes; one is filled by
Fe(II) and the other by Al The symmetry is DO;. The
material is ferromagnetic, but, as noted by Grest [12], if
the 180° superexchange interaction were stronger, Fe; Al
would have the AFM state shown in Fig. 1(a), correspond-
ing to wave vectors § = 27(* 1, * 1, *1)/a,. Figure 1(b)
applies to hypothetical FeqAl; [2], where the nodes of the
SDW pattern are at the positions of the Al atoms and the
antinodes center on the clusters of nine Fe atoms.

The change in structural unit cell from fcc in Fig. 1(a)
to primitive cubic in Fig. 1(b) frees the cube of Fe(I)
atoms to adjust its positions with respect to the Al atoms,
changing the volumes of Fe atoms and affecting their
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FIG. 1 (color). Magnetization patterns with cubic symmetry
for (a) Fe;Al and (b) FeqAl;. The green and red atoms are Fe(I)
sites with opposite spin directions. The gold atoms are Al. The
grey atoms sit in positions of magnetic frustration. In (a) these
are Fe(Il) and in (b) they are Al The first three layers of the
128-atom cubic unit cells are shown in perspective.
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magnetic moments. This applies also for the B2 structure
away from stoichiometry.

The appearance of a SDW pattern with wave vectors
g =2m(x}, £ *£1/as would not have been surprising
if Fe(43Al) had the cubic FegAl, structure, but it does not.
[The diffraction pattern shows only weak diffuse inten-
sity at the positions, e.g., (3,1, 1), where the Fe;Al order-
ing would give Bragg peaks.] If n were 8 for the FeqAl,
structure, the magnetization pattern would be that of
Fig. 2, where the antinodes of the SDW pattern are at
the centers of eight clusters of nine Fe atoms each. This
complex pattern has a unit cell with 1024 atoms. If the
moment of each Fe atom depends on the strength of the
molecular field forcing the SDWs, then the atoms near
the center of the eight clusters of nine Fe atoms would
have the highest moment and those at the edges of the
supercluster would have the lowest moment.

The randomness of occupation by Fe(Il) of the Al
sublattice precludes the long-range AFM structure of
Fig. 2, but an approximation to such a pattern could be
maintained by shifting the phase of the pattern with
respect to the lattice over the distances of coherence
found in the diffraction results. The coherence length is
seen in the breadth of the (%, %, %) peak in the diffraction
pattern of polycrystalline Fe(40Al) shown in Fig. 3(a).
There is a decrease in the small-angle neutron scattering
from 120 to 1.7 K. The difference between the patterns at
these temperatures shows that most of the decrease in
scattering intensity reappears as a broadened peak with a

O
o _0
&
O
&)
O
o

/5!
2
/S

8
&
O
O
o
@
o

2
2
2

o
o
O
O
o)
Qo _0
O

@
5
o

0o
O
O
O
O
O
O

o
O
O

FIG. 2 (color). Magnetization patterns with cubic symmetry
for FegAl,; with the magnetic unit cell doubled in each direction
to form a structure that would produce magnetic scattering
related to that observed in Fe(43Al) . The first three layers of
the 1024-atom unit cell are shown with the coding of Fig. 1.
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periodicity of 1.17 nm and a coherence length of 5 nm.
The peak position yields the magnitude of the scattering
vector. The single crystals provide the direction; see
Fig. 3(b). There is negligible difference in results between
the polycrystalline material, a well-characterized homo-
geneous alloy of remarkable ductility [13], and the single
crystal of Fe(40Al). The crystals were grown from the
melt using the Bridgeman method [14].

The temperature dependence for the scattering ampli-
tude of the (1,1, 1) peaks is shown in Fig. 4. There is no
obvious sign of the freezing temperatures, known from
the ac susceptibility work of Shull ez al. [7] and Takahashi
et al. [8]. These data resemble neutron scattering from a
weak ferromagnetic material in a large applied field. It
matches the behavior of the dynamically fluctuating SDW
clusters seen in Cu(Mn), Pd(Mn), and Pd(Cr) spin-glass
alloys [15-17], for which greatly refining the energy
selection in triple axis neutron spectrometry leads to
some resolution of the freezing process.

The solid lines in Fig. 4 describe the response of a lo-
calized moment to an applied field plus a cooperative field
proportional to the resulting moment. The neutron scat-
tering intensity I = (u,/pq0)*(I0 — Ipg) + I, where
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FIG. 3. Neutron scattering intensity for (a) polycrystalline

Fe(40Al) at 120 and 1.7 K with their difference shown in the
inset and (b) single crystal Fe(40Al) at 12 K shown as contours

about the (,1,1) peak.
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FIG. 4 (color). Temperature dependence of the SDW ampli-
tudes of Fe(Al) single crystals [14]. The black arrows are the
freezing temperatures from Ref. [8]. Fitting with Eq. (1) yields
the solid curves. The red arrows are the 7, from the fits.

4, the moment at wave vector ¢, is given implicitly by
mgy = lu’q/lu’qO = BJ(/'LqO(Hq + Aqu)/kBT)5 where BJ
is the Brillouin function. The relation between 7 and
m, is simplified by using the approximation B;(x) =

1/4/[(9/4x)* + 1] to give

T = (Ty/m, + Tp)y/(1 — m2). (1)
The fitting yields estimates of T, = Aquéo/kg and
Ty = mwyH,/kg. Ty is a measure of the cooperative
interaction of the Fe moments. T is a measure of the
strength of H,. These are compared in Table I with the
freezing temperatures T, from Takahashi er al [8].
The field H, is assumed here to be temperature indepen-
dent. If H, is interpreted as coming from the spin density
waves, this implies a high value for the Néel temperature
of the SDW compared to T, . The SDW field H,, appears to
persist far above T'y.
The breadth of the SDW peaks, e.g., see Fig. 3, can be
interpreted as shifts in the phase of the SDWs with respect
to the lattice with the phase changing at the rate of

TABLE I. Comparison with freezing temperatures from

Takahashi et al. [8].

Atomic percent Al T, (K) Ty (K) Ty (K)
34 50 50 38
40 26 17 32
43 15 12 10
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~0.1 rad/nm. Conceptually there is a difference between
a picture where the SDWs have abrupt shifts of phase at
domain boundaries or gradual shifts as the SDWs adjust to
take into account the positions of the clusters with an
Fe(II) atom surrounded by eight Fe(I) atoms. While neu-
tron diffraction cannot distinguish between these, micro-
magnetic measurements might.

Fe(34Al), Fe(40Al), and Fe(43Al) have wave vectors
given by n ~ 11, ~7, and ~6, respectively, with n in-
creasing with temperature by less than 1 over the range 4
to 120 K. The width of the diffraction peaks also increases
with temperature, corresponding to a decrease in coher-
ence length from 5 to 3.5 nm.

In Fe(Al), the eight satellites about the origin appear
also around the (1,1,0) and (2,0, 0) reciprocal lattice
vectors of the parent bcc lattice, but not around the
(1,0,0) nor the (1,1,1) superlattice reciprocal lattice
positions; see Fig. 5. The structures of Figs. 1 and 2 also
have eight satellite reflections about each of the reciprocal
lattice vectors for the parent bee structure but not for the
superlattice reciprocal lattice positions.

The SDWs in Fe(Al) should be as important to the
understanding of magnetism in metals as the SDWs in
Cr. In Cr the § is just short of 277(1, 0, 0)/a,, which makes
the moments of nearest neighbors of the bcc structure
almost oppositely aligned. This ¢ couples states on
parallel parts of the Fermi surface to form the SDW.
In the iron aluminides, the nearest-neighbor moments
are almost aligned parallel. If the principal wave vectors
are the 48 combinations of § = 27( = (1 + %), *(1 — %),
+(0 + %)) /ay, these could couple states on opposite sides
of the Fermi surface to form the SDWs. Here the wave
vectors are in groups of four, each near one of the (1, 1, 0)
reciprocal lattice spots of the parent bcc structure; see
Fig. 5.

(0 1 1)

0o
111

(1/2 1/21/2)

8/7 1/7)
q @
(110)
@ ®

(8/7 6/7 -1/7)

100)

FIG. 5 (color). The reciprocal lattice spots in Fe(40Al).
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It is as if each of the 12 (1, 1, 0) wave vectors of the
lattice split into four wave vectors that swing away from
the (1, 1, 0) to create 48 gaps at the Fermi surface. This
suggests the possibility that the application of a high
magnetic field could move the wave vectors of the SDW
back to the (1, 1, 0), producing field induced ferromagne-
tism from a commensurate SDW.

From the polycrystalline Fe(40Al) data, we can put a
lower bound on the moment per atom if we take as a
model the extreme case of a single g state with a trans-
verse helical SDW. This yields a moment of 0.26 up per
atom if every atom (Fe and Al) were to carry the same
moment. The decrease in moment with increasing Al,
seen in the single crystals, has yet to be quantified.

The competition between near-neighbor FM coupling
and third-neighbor AFM coupling through an Al atom
has a firm theoretical basis. The superexchange interac-
tion appears in cluster calculations of Reddy et al [18].
Shukla and Wortis [19] obtained spin-glass behavior by
remapping the Fe(Al) problem into one that can be
treated by renormalization group methods. Grest [12]
carried out Monte Carlo calculations with these two
specific interactions, obtaining results that mimicked
the data of Ref. [7]. Neither of these two studies repro-
duced the reentrant behavior. The almost ferromagnetic
SDWs in Fe(Al) point to another interaction.

The similarities between Fe(Al) and the spin-glass
alloys Cu(Mn), Pd(Mn), and Pd(Cr) [15-17] should be
noted in this regard. Over 40 years ago Overhauser [20,21]
proved that Hartree-Fock theory, which treats exchange
as the nonlocal interaction that it is, makes a SDW state
lower energy than a paramagnetic state for an electron
gas, so-called jellium, when treated rigorously. There is a
peak in the wave-vector dependent susceptibility y(g) for
wave vectors that span the Fermi surface. Overhauser
used this to predict SDWs in Cu(Mn), which were found
later. The Cu(Mn) results compel the acceptance of a peak
in x(q) [22].

When Overhauser added the corrections to Hartree-
Fock theory needed for the correlation energy, he dis-
covered static charge-density-wave (CDW) states with a
lower energy than the static SDW states in deformable
jellium [23,24]. CDWs have been found recently in liquid
Li(NH3)4 [25].

The SDW and CDW states are closely related [26]. The
difference is just a shift in the phase of the static spatial
oscillations for spin-up electrons with respect to those for
spin-down electrons. In a sufficiently large static field
with wave vector ¢, the CDW should take on a SDW
component. The Fe clusters evident in Figs. 1 and 2 might
cause such a phase shift in the (1, 1, 0) CDWs.

CDWs (also called long period superlattices or concen-
tration waves) appear in related B2 alloys of TizyV,pAls,
where the wave vectors are quite similar to those ob-
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served here [27]. For long period superlattices the con-
nection of the wave vectors to the Fermi surface was
firmly established by Sato and Toth [28].

We do not know whether there is indeed cubic symme-
try from multiple ¢’s in each region or lowered symmetry
from single-g states in multiple regions. Nothing has been
learned yet about polarization axes. We have yet to carry
out such tasks as finding the effects of magnetic fields,
pressure, strains, and changes in alloy composition by
substitution of other atoms. Heat capacity measurements
would show whether the moments on the Fe atoms have a
thermodynamic spin degree of freedom or result from a
more itinerant electron model [29].

This work was supported by U.S. Air Force Office of
Scientific Research Grant No. F49620-00-1-0364.
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