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Physical Mechanism of the Two-Dimensional Enstrophy Cascade
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In two-dimensional turbulence, irreversible forward transfer of enstrophy requires anticorrelation of
the turbulent vorticity transport vector and the inertial-range vorticity gradient. We investigate the basic
mechanism by numerical simulation of the forced Navier-Stokes equation. In particular, we obtain the
probability distributions of the local enstrophy flux and of the alignment angle between vorticity
gradient and transport vector. These are surprisingly symmetric and cannot be explained by a local
eddy-viscosity approximation. The vorticity transport tends to be directed along streamlines of the flow
and only weakly aligned down the fluctuating vorticity gradient. All these features are well explained
by a local nonlinear model. The physical origin of the cascade lies in steepening of inertial-range
vorticity gradients due to compression of vorticity level sets by the large-scale strain field.

DOI: 10.1103/PhysRevLett.91.214501 PACS numbers: 47.27.Ak, 47.27.Gs
10 100 1000
0.001

0.01

0.1

1

k

Z
(k

)/
η

k

k-3[ln(k/kc)]
-1/3

1 10 100 1000

10-1 9
10-1 7
10-1 5
10-1 3
10-1 1
10-9
10-7
10-5

0.001

0.1

E
(k

)

solved using a fully dealiased, parallel pseudospectral
code with second-order Adam-Bashforth time stepping.

FIG. 1. Enstrophy flux Z�k� normalized by enstrophy dissi-
pation � vs k. The inset is the energy spectrum.
Two-dimensional (2D) turbulence has been a fascinat-
ing topic for over 30 years, since the seminal papers of
Kraichnan [1], Batchelor [2], and Leith [3]. The cascade
of enstrophy (mean-square vorticity) to small scales that
they proposed is the 2D analog of the energy cascade in
three-dimensional (3D) turbulence. One of the reasons for
the sustained interest in 2D turbulence is its importance
for the interpretation and analysis of atmospheric and
oceanic dynamics. Laboratory experiments [4,5] on
nearly 2D systems and theoretical advances [6–9] have
sparked renewed excitement and interest in the enstrophy
cascade. Recent research on 3D turbulence has identified
inertial-range alignments between characteristic large-
and small-scale quantities [10–12], e.g., large-scale strain
and small-scale stress, as the key geometrical and statis-
tical property behind the forward energy cascade. One of
the crucial goals of turbulence theory is to understand
how such alignments are produced by essentially inviscid
dynamics at high Reynolds number. Here we explain the
origin of the corresponding alignments in 2D, which lead
to the forward enstrophy cascade.

We have simulated the equation

@t!� v�r!� �i�����pi!� �u����pu! � F (1)

in a square domain with side L � 2
 and periodic bound-
ary conditions. Here v is the velocity and ! � r� v
is the vorticity, F (with Fourier components F̂Fk �
�k=!̂!�k) is a stirring force applied to wave numbers
jkj � 4 ! 7 to give a constant enstrophy input rate � �P

k�k. We add hyperviscosity with pu � 8 (�u � 1:4�
10�45) at high wave numbers to extend the inertial range
and hypoviscosity with pi � 2 (�i � 16:0) at small wave
numbers to destroy box-size vortices. The equation is
0031-9007=03=91(21)=214501(4)$20.00 
The resolution is 20482. A statistically stationary state is
achieved after 214 large-eddy turnover times. We have
also used Laplacian viscosity (pu � 1) to verify that
our main results are insensitive to the use of hypervis-
cosity in Eq. (2).

In Fig. 1, we plot the spectral enstrophy flux Z�k� �P
jkj<khRe
!̂!�k�

��v�r̂r!��k��i, showing about a decade
and a half of inertial range 20< k< 500, where this
flux is constant. The inset of Fig. 1 shows the energy
spectrum of this final steady state. The power-law scaling
in the inertial range is slightly steeper than the �3 law
predicted in [1,2] but is consistent with the later logarith-
mic correction [13]. The figure demonstrates unambigu-
ously the forward flux of enstrophy to smaller scales. It
does not, however, describe how the underlying transfer
processes are spatially distributed, nor does it suggest
how efficient the transfer mechanism is at moving ens-
trophy to smaller scales. To address these questions, we
consider a local flux that quantifies the transfer of
enstrophy into small scales at a fixed point in real space.
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FIG. 2. (a) PDF of �Z‘ � hZ‘i�=�Z with Z‘�r; t� enstrophy
flux and �2

Z � h�Z‘ � hZ‘i�
2i, at different filter lengths ‘.

(b) PDF’s of the true flux (solid line) and the ‘‘nonlinear
model’’ (dashed line) at ‘ � 
=130. The two lines are
indistinguishable.

FIG. 3. (a) PDF of the angle � between �‘ and r!‘ and
(b) conditional mean hZ‘j�i, for ‘ � 
=130.
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The importance of such a quantity for studying the 3D
energy cascade was first emphasized by Kraichnan [14],
who defined the local flux by a banded Fourier series.
Instead, we distinguish the large- and small-scale modes
using a smooth filter as in the large-eddy simula-
tion (LES) modeling scheme [15,16]. We apply the
filter to the vorticity form of the 2D Euler equation @t!�
�v � r�! � 0. That is, we consider the ‘‘large-scale vor-
ticity’’ defined by the convolution !‘ � G‘ �! and the
large-scale velocity defined by v‘ � G‘ � v, where G‘ is
taken to be the Gaussian filter. The equation obtained by
low-pass filtering is

@t!‘�r; t� � r�
v‘�r; t�!‘�r; t� � �‘�r; t�� � 0; (2)

where �‘ � �v!�‘ � v‘!‘ is the space transport of vor-
ticity due to the eliminated small-scale turbulence. From
the previous equation, a balance is derived for the local
density h‘�r; t� � 1

2!
2
‘�r; t� of the large-scale enstrophy,

@th‘�r; t� � r�K‘�r; t� � �Z‘�r; t� in which the current
K‘�r; t� � h‘�r; t�v‘�r; t� �!‘�r; t��‘�r; t� represents the
space transport of large-scale enstrophy, and

Z‘�r; t� � �r!‘�r; t���‘�r; t� (3)

is the enstrophy flux out of large scales into small-scale
modes. This quantity is odd under time reversal—an
irreversible forward cascade of enstrophy occurs precisely
when it develops a positive mean value. From Eq. (3), we
see that in order for Z‘ to have a net positive value the
turbulent vorticity transport �‘ should tend to be ‘‘down
gradient,’’ that is, antiparallel to the large-scale vorticity
gradient r!‘. The required statistical anticorrelation of
�‘ and r!‘ is an alignment property characteristic of the
2D enstrophy cascade. It is analogous to the much-studied
alignment of the stress tensor �‘ due to small scales and
the large-scale strain S‘, which underlies the energy
cascade to high wave numbers in 3D [10–12]. Applying
the definitions above to our numerical data computed
from (1), we obtain the probability density function
(PDF) of the enstrophy flux in the steady-state cascade,
P�Z‘�, shown in Fig. 2(a) for several filtering lengths ‘ in
the forward cascade range.

These PDF’s have growing tails going to smaller
scales, indicating increasing intermittency of the flux.
However, the most striking feature of the PDF’s are their
near symmetry, especially in the far tails. Despite its
positive mean (equal to the plateau value in Fig. 1), the
skewness of the PDF is quite small, only 1.5. In contrast,
the PDF of energy flux in 3D has a skewness of 11 in the
inertial range [17]. The forward cascade is made more
apparent in Fig. 3(a), where we plot the PDF of the angle
of alignment � between the vectors �‘ and r!‘ for a
filtering length ‘ � 
=130 in the inertial range (the
results are similar throughout that range). There is a
greater probability that � > 
=2, which occurs about
62% of the time. Since Z‘ � j�‘j � jr!‘j cos�
� ��,
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this is the same as the probability that enstrophy flux is
positive. The amplitudes of the flux when positive also
tend to be somewhat larger than when negative. This can
be seen in Fig. 3(b), which plots the conditional average
of Z‘ given �, where the plateau to the right is greater than
that to the left. This fact, together with the higher proba-
bility of � > 
=2; demonstrates that net flux is forward.
There is, however, a somewhat greater reluctance of ens-
trophy in 2D to cascade forward than for energy in 3D.
About 70% of the realizations in 3D have positive values
of energy flux [17]. Also, the angle between the eigen-
frames of the minus stress tensor and the filtered strain in
3D is about 32� [12]. It is remarkable that in 2D the most
probable value of 
� �, the angle between ��‘ and
r!‘; is about 77�, much larger than the corresponding
angle in 3D. A scalar eddy-viscosity model, as proposed
by Leith [18], would give a 0� angle between ��‘ and
214501-2
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r!‘. Because vorticity gradients tend to be perpendicular
to streamlines, Fig. 3(a) shows there is more of a tendency
for vorticity transport �‘ to be parallel to velocity than to
be down the local vorticity gradient.

The classical picture of the enstrophy cascade [2,19] is
that there is stretching of small-scale vorticity gradients
by the strain arising from larger-scale vortices. This
suggests that the forward flux should occur mainly in
strain-dominated regions of the flow. By the Weiss crite-
rion [20] this corresponds to regions where �‘ < 0
(hyperbolic), with �‘ � det�rv‘� � 1

2!
2
‘ � S2‘. Regions

with�‘ > 0 (elliptic) are vorticity dominated. In Fig. 4(a)
is plotted the instantaneous �‘�r; t� from one snapshot of
the simulation, with strain regions in red and vorticity
regions in green. In Fig. 4(b) is plotted the instantaneous
enstrophy flux in the same domain. The plots show that
flux is either forward or backward with almost equal
likelihood in vorticity regions, but flux tends to be pre-
dominately forward in the strain regions. This is verified
quantitatively in Fig. 5(a) which shows the conditional
PDF’s of the enstrophy flux in both the strain and vor-
ticity regions. The PDF in the strain region is clearly
skewed to the right, while the PDF in the vorticity region
FIG. 4 (color). Instantaneous snapshot of (a) �‘�r; t� and
(b) Z‘�r; t�, for ‘ � 
=130 in a 5122 subdomain. The red
regions in (a) are dominated by strain and the green by
vorticity.
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remains nearly symmetric. The difference between the
two regions is seen even more clearly in Fig. 5(b), which
plots the conditional PDF’s of the angle � between �‘ and
r!‘. The PDF in the strain region is clearly shifted to
values of � > 
=2; , whereas the PDF in the vorticity
region is more nearly symmetric. These results demon-
strate that forward enstrophy cascade indeed occurs pre-
dominately in strain regions.

The physics of the cascade is further illuminated by a
simple approximation for �‘ [9]. To derive this expression
we introduce a new length scale ~‘‘ � ‘ and low-pass filter
~vv of v with scales less than ~‘‘ removed. Then, for ~‘‘ < ‘ it
should be true that �‘ � ~vv ~!!� ~vv ~!! . The scales less than
~‘‘ are believed to make only a disorganized, uncoordi-
nated contribution to the vorticity transport �‘ [13].
Although vorticity increments at smaller scales decrease
only very slowly, in mean square as log�~‘‘�, contributions
of those scales are subject to large cancellations, produc-
ing an extra small factor ~‘‘. The resulting approximation is
a 2D analog of the similarity model [15], a computational
LES model in 3D. We emphasize, however, that our ap-
proximation does not rely on any phenomenological as-
sumption of self-similarity, but only on the assumption
that scales ~‘‘ < ‘ contribute negligibly. We have verified
that the approximate formula for the transport vector is
almost indistinguishable from the exact one for all ~‘‘ < ‘.
For the extreme choice ~‘‘ � ‘ the fields appearing in the
formula for �‘ are smooth on the filter scale ‘ and their
increments over such lengths can be approximated by a
local Taylor expansion. The leading-order term is the
analog of the 3D nonlinear model [15]:

� NL
‘ � C2‘2D‘�r!‘; (4)
Strain region
Vortex region
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FIG. 5. (a) PDF’s of Z‘�r; t� and (b) PDF’s of the angle �
between �‘ and r!‘, ‘ � 
=130. The solid line indicates
strain, and the dashed line indicates the vorticity region.
hZ‘istrain � 3:7� 10�3 and hZ‘ivortex � 9:5� 10�4.
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FIG. 6. PDF’s of the angle ! between r!‘ and l�‘ , the left
eigenvector of D‘ for the negative eigenvalue.
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where Dij � @vi=@xj is the large-scale velocity gradient
(or deformation) tensor and C2 is the second moment of
the filtering function G. The expression C2‘

2D‘ in (4) is a
‘‘tensor eddy viscosity,’’ which scales dimensionally the
same as the scalar eddy viscosity proposed by Leith [18].
The arguments of Kraichnan [21] cast doubt on the
validity of a scalar eddy viscosity, and, indeed, we have
verified that a perfect antiparallel alignment of �‘ and
r!‘ is not observed. However, the tensor eddy-viscosity
model of the transport vector in (4) is correlated with
the exact one at the 99% level. The two vector fields,
�‘�r; t� and �NL

‘ �r; t�, in a plot together (not shown) are
almost identical to the eye. The PDF of the nonlinear
model approximation to the enstrophy flux, ZNL

‘ �
�C2‘2�r!‘�

>D‘�r!‘, shown in Fig. 2(b), is likewise
nearly indistinguishable from the exact PDF.

The close agreement of the exact transport vector �‘
and �NL

‘ allows us to connect the forward flux more
clearly with the physical picture of the enstrophy cascade.
This is believed to be due to the stretching and compres-
sion of ribbons of vorticity by the large-scale strain field.
In fact, the squeezing together of very different vorticity
levels amplifies the gradient along the compressive direc-
tion. Therefore, one expects that r!‘ will tend to align in
the strain regions along l�‘ , the left eigenvector of D‘ for
the negative eigenvalue. In Fig. 6 is plotted the PDF of the
angle between r!‘ and l�‘ . There is an increas-
ing tendency for these vectors to align as ‘ decreases
through the inertial range. The corresponding alignment
for the dissipation-range quantities, with ‘ � 0, was al-
ready observed in [22,23]. In view of the formula for ZNL

‘
this typical alignment explains the tendency for flux
to be positive. If the alignment were perfect, then a
scalar eddy-viscosity model would result, with �‘ �
�C2 ‘‘

2r!‘, where � ‘ are the eigenvalues of D‘
(both real in the strain region). As shown in Fig. 6 this
214501-4
alignment is the most likely, but not overwhelmingly so.
Thus, the enstrophy flux is often negative as well as
positive, but preferentially positive in the strain region.

In conclusion, we have shown that the 2D enstrophy
cascade is surprisingly time symmetric. Turbulent vortic-
ity transport tends to be along streamlines, not down
gradient as predicted by a scalar eddy viscosity. A tensor
viscosity model, the nonlinear model, predicts well the
transport vector, making the model attractive for geo-
physical applications. Our work has clarified the funda-
mental connection of 2D enstrophy cascade to stretching
of inertial-range vorticity gradients.
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