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Multichannel optical add-drop processes are studied in a class of symmetric waveguide-resonator
systems. With insight gained from group theory, we analyze these systems and show that they can add or
drop multiple wavelengths simultaneously, with 100% efficiency. A new mechanism is presented to
reduce the remnant light at the dropped wavelengths in the pass-through port. High-order Butterworth
filters can also be achieved in these systems. Built upon conventional or photonic-crystal based
structures, these systems can be used in optical communication applications.
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In today’s fiber-optic networks, light of multiple wave-
lengths propagates along a single optical fiber. Each wave-
length of light transmits its own information undisturbed
by the other wavelengths. A single-channel optical add-
drop multiplexer (OADM) is a device that can add or
remove a specific wavelength of light from a fiber.
Recently, more and more applications demand OADMs
that are able to add and remove multiple wavelengths.

Filters based on photonic crystals (PC) have been dis-
cussed for single-channel OADM applications. Fan et al.
first proposed a structure of two parallel waveguides in a
photonic crystal, with two resonators in between [1].
Light of multiple wavelengths comes into one waveguide
from a fiber. With a proper design of the resonators, light
of a specific wavelength will be completely transferred to
the other waveguide, while light of the other wavelengths
passes through the original waveguide and is coupled into
another fiber. Quantum Green’s functions have been used
to analyze the light transfer process in this structure.
Additionally, simulations are performed to study PC-
based single-channel OADMs [2] and demultiplexers
[3]. A problem encountered in current simulations is
that for many ports the light transfer efficiencies are
fairly low. This also results in much light remaining in
the pass-through port. Clearly, an analytic theory is
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needed to explore the characteristics and ultimate per-
formance of PC-based multichannel OADMs and to give
direction to the simulation efforts. New system architec-
ture may be needed to overcome the limitations of the old
systems.

In this Letter, we propose a class of new structures
which can add or drop multiple wavelengths simulta-
neously. In such a structure that has n-fold symmetry, n
pairs of resonators and n waveguides are arranged in a
symmetrical manner. An n-fold structure can achieve
100% add and drop of light at n� 1 different wave-
lengths. These structures also provide a way of suppress-
ing the remnant light intensity at the pass-through port
for the bands of dropped frequencies. Such an improve-
ment in optical isolation is ideal for many applications.

Consider a system having n waveguides on the edges of
a regular n-polygon. Inside the polygon, near the middle
of each edge, there is a pair of identical cavities each
having a single resonant mode. Their modes can be com-
bined to form one even and one odd mode with respect to
the mirror plane between them.With the resonators placed
symmetrically, the system possesses a symmetry of point
group Cnv. Figure 1 illustrates the case n � 3. An n-fold
system is described by a Hamiltonian [1]
H � H0 � V; H0 �
Xn�1
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Vmc;m0kjmcihm0kj � Vm0k;mcjm0kihmcj�;
(1)
where jmki is a propagating mode with wave vector k and
frequency !k in waveguide m. The mode jmci is a local-
ized mode of the resonator pair next to waveguide m, c �
e; o for the even and odd modes, respectively; !mc is its
frequency. The coefficients Vmc;m0c0 and Vmc;m0k measure
the coupling between the corresponding modes. We have
neglected the coupling between the propagating modes
of different waveguides as discussed by Xu et al. [4]. For
n > 2, the symmetry operations of the group Cnv do not
commute with each other; therefore, irreducible represen-
tations of dimensions higher than unity appear [5]. In
simple words, a set of basis functions that are the eigen-
states of all symmetry operations does not exist.
Compared to the standard basis functions of irreducible
representations, the eigenfunctions of Cn operations are
found to offer more convenience to analysis. One can
readily show that, constructed from jmki, the modes
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FIG. 1. A sketch of the case n � 3. Each waveguide is ac-
companied by a pair of cavities. Multiple wavelengths of light
come in from the input port. Two wavelengths are dropped to
the drop1 and drop2 ports, respectively. Light of the corre-
sponding wavelengths is coupled in through the add1 and add2
ports, then merges with the undropped light, and reaches the
output port altogether.
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j�ki �
1���
n

p
Xn�1

m�0

e�i�2�=n	�mjmki; � � 0; 1; . . . ; n� 1

(2)

are eigenfunctions of Cn. One can construct j�ei and
j�oi from jmei and jmoi similarly. The reflection Mj by
the mirror plane bisecting waveguide j gives

Mjj�ci � 
e�i�2�=n	2�jj�ci; c � e; o; (3)

where � � ��, and the plus and minus signs are for e
and o, respectively. A similar relation holds for j�ki.
Note j�ei and j�oi are no longer eigenfunctions of any
Mj, which brings difficulties to the analysis. From these,
it follows that V�k;�k0 � V�c;�c0 � V�k;�c � 0, for � � �.
In terms of the symmetrized basis,
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the Hamiltonian can be simplified to

H � H0
0 � V 0;
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V�c;�kj�cih�kj � V�k;�cj�kih�cj�: (4)

The decoupled j�c1i; j�c2i can be expressed as

j�c1i � u�j�ei � v�j�oi; (5a)

j�c2i � �v��j�ei � u��j�oi; (5b)

where u� and v� are complex coefficients satisfying
ju�j

2 � jv�j
2 � 1. Their values can be easily solved

given V�e;�o.
Solving the Lippmann-Schwinger equation [6], one

finds the transfer matrix has elements T�0k0;�k �
T�k0;�k��0�,

T�k0;�k � �k0;k �
X
c;c0

V�k0;�c0G�c0;�c�!k	V�c;�k
!k �!k0 � i�

; (6)

where Green’s function is determined by

�G�1	�c0;�c�!	 � �!�!�c � i��c	�c0c � ��c0;�c; (7)

where ��c represents the cavity loss [4,7]. Note that ��c
may depend on frequency, because the coupling coeffi-
cients Vm1c;m2c0 are usually frequency dependent due to the
nature of ‘‘photonic potential’’ [8]. The self-energy is

��c0;�c�!	 �
X
k

V�c0;�k
1

!�!k � i�
V�k;�c: (8)

The scattered wave is given by j ��	
�k i �

P
k0T�k0;�kj�k

0i.
The forward and backward scatterings for j�ki are
hx��1j ��	
�k i�hxj�ki�

�iL
v�!k	

hxj�ki
X
c;c0
V�k;�c0G�c0;�c�!k	V�c;�k; hx��1j ��	

�k i�
�iLhxj�ki
v�!k	

X
c;c0
V�k;�c0G�c0;�cV�c;�k:

To further the calculation, we temporarily assume ��c0;�c is diagonal. We revisit this issue shortly. We denote the
diagonal terms as ��c;�c�!	 � �!�c�!	 � i��c�!	.

In an OADM, we require no backscattering,

V�k;�c1V�c1;�kG�c1;�c1�!k	 � V�k;�c2V�c2;�kG�c2;�c2�!k	 � 0: (9)
Following Fan et al., accidental degeneracy conditions
[7] are adopted, !�c1 � �!�c1 � !�c2 ��!�c2 , ��c1 �
��c2 , and ��c1 � ��c2 . Because of these equalities be-
tween c1 and c2, we hereafter use c to represent c1 or c2
unless confusion occurs. Now solving Eq. (9) gives
V�k;�c2
V�c1;�k

� �
V�k;�c1
V�c2;�k

� ei �k ; (10)

where  �k is an arbitrary phase angle. This condition also
automatically ensures that the self-energy is diagonal.
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One can verify that Eq. (10) simultaneously satisfies
��c1;�c2 � 0 and Eq. (9), two independent equations.

The symmetrized forward scattering amplitude is cal-
culated as

A�k � 1�
�2i��c

!k � �!�c � �!�c	 � i���c � ��c	
; (11)

where �!�c, ��c, and ��c are evaluated at !k. Now
consider the light of a single wavelength coupled into
waveguide #0, with unity amplitude. This light can be
decomposed into symmetrized modes by Eq. (2); thus the
forward scattering amplitude in waveguide m is

am �
1

n

X
�

A�ke�i�2�=n	�m: (12)

The sum of the scattering amplitudes is found to be
independent of the terms � � 0,X

m

am � A0k: (13)

The sum of the intensities is given byX
m

jamj
2 �

1

n

X
�

jA�kj
2: (14)

If ��c � 0 for all �, then all jA�kj � 1, total light inten-
sity is conserved after scattering. Generally, in a passive
device, all ��k’s and ��k’s are non-negative, hence
jA�kj � 1, an optical loss occurs.

The equation am � A0k1�mm1
characterizes that a com-

plete drop from waveguide #0 to waveguide m1 occurs at
frequency !k1 . Such a drop occurs if and only if

A�k1 � A0k1e
i�2�=n	�m1 ; � � 0; 1; . . . ; n� 1: (15)

Two interesting cases are considered. First, consider an
ideal lossless case with��c � 0 for all �. It turns out that
the ‘‘optical isolation’’ is very poor in this case.
Physically, it means that when a lossless drop occurs
from waveguide #0 to m1 at !k1 , it is impossible to
keep the light intensities in other n� 2 waveguides in-
finitesimally small over a band of frequency centered at
!k1 . Without loss of generality, consider a drop to wave-
guide #1. Over a frequency range centered at !k1 , assume
the light intensities are essentially zero in all waveguides
except #0 and #1, which yields a0 � A0k � a1 from
Eq. (13). Inverting Eq. (12), one can calculate A�k from
the am’s. Then

jA�kj
2 � 1� 2ja1j�ja1j � cos�	

�
1� cos

2��
n

�

� 2ja1j sin
2��
n

sin�; (16)

where � � argA0k � arga1. One readily shows that, for
n � 3, jA�kj � 1 cannot hold for all �, when ja1j varies
continuously on the interval 
1�  ; 1� where  is an
arbitrarily small, positive number. This contradicts our
lossless assumption according to Eq. (14).
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The second case we study is that �0k � 0 and all other
��c’s take non-negative values. This case is no longer
lossless, but we see that loss is essentially introduced only
in certain frequency ranges in favor of the device per-
formance. To begin with, we show that �0k � 0 places a
constraint on the phase angle relation between A0k and a1.
In fact, one finds from Eq. (16) that

jA�kj
2�jA��kj

2�2�8ja1jsin
2��
n

�ja1j�cos�	: (17)

Since the left-hand side must not be positive, one obtains
cos� � ja1j. Subject to this constraint, a variable phase
��!	 can be chosen. However, we can show it to be
equivalent to the case where �0 � 0 and a0m � ei�am for
all m when solving for A�k’s. Note that the overall phase
does not change the filter intensity profile jamj2. Also, if �
is a constant, it must be zero since max�ja1j	 � 1; hence
we have A0k �

a1
ja1j

by the definition of �.
For the second case, one can solve for ~!!�c � !�c �

�!�c, ��c and ��c as functions of frequency, given the
desired am�!	 curves. Then one can design the resonators
having these characteristics. Consider the system shown
in Fig. 1. Assume

a1�!	 �
�i�ae

i#a

!�!a � i�a
; (18a)

a2�!	 �
�i�be

i#b

!�!b � i�b
; (18b)

a0�!	 � A0k � a1 � a2; (18c)

where !a, !b, �a, and �b are constants. Hereafter, the
frequency range where the magnitude of a1 is appreciable
is referred to as band a. A similar reference applies to
band b. The appearance of variable phase angles #a�!	
and #b�!	 is necessary for the continuity of the solved
quantities, at the frequencies between bands a and b.
We require these phases to remain constant unless the
corresponding amplitudes are negligible. Therefore, they
practically have no effect on the delay or other properties
of the filter [9].

To solve for ~!!�c,��c, ��c, one substitutes Eqs. (11) and
(18) into Eq. (12), noting that ! in Eq. (18) is just !k
in Eq. (11). Because of the constraints discussed above
(constant in-band #a;#b, non-negative ��c; ��c, and
continuity), the solution is not straightforward. Certain
optimization algorithms can be used. As an example, we
plot one set of solutions for a system with parameters
�a � �b, !b �!a � 11�a in Fig. 2. However, infinite
sets of ~!!�c, ��c, ��c can produce the desired filter. This
gives plentiful freedom in design. Such freedom is very
desirable when this theory is combined with finite differ-
ence time-domain (FDTD) simulations to design a planar
light wave circuit. The larger the space of the solutions,
the easier some of these solutions can be achieved with
simple resonators, such as those formed by varying the
diameters of the defect ‘‘atoms.’’ A detailed investigation
213901-3



FIG. 2. The solved ~!!�c, ��c, and ��c are plotted in (a)–(c).
Dash-dotted, solid, and dotted lines correspond to � � 0, 1,
and 2, respectively. Reconstructed spectra are shown in (d) on
a linear scale, where I00 (dotted line) is a reference lossless
spectrum. Each intensity reaches maximum 1 and minimum 0,
except the total intensity.

FIG. 3. Reconstructed spectra for the third-order
Butterworth case, #a � 0 for appreciable ja1j.
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of the space of the solutions is beyond the scope of this
Letter. To obtain the set of solutions in Fig. 2, we have
applied the additional constraint that ~!!�c’s are constant
when the magnitudes of the filter transfer functions are
appreciable, and we connect ~!!�c’s of different bands
using linear interpolation (other smooth interpolations
are possible). In Fig. 2(d), the intensity spectrum Im �
jamj2 for each port is reconstructed from the solutions
presented in Figs. 2(a)–2(c). One sees 100% drops occur
at !a and !b. Assume that !a and !b differ by 0.8 nm
(centered at 1:55 &m), then the 0.5 and 30 dB bandwidths
are 0.05 and 0.93 nm, respectively. The sum of the three
spectra shows prominent loss. And the loss penalizes only
the pass-through port in the bands of dropped wave-
lengths, as indicated by a reference lossless pass-through
spectrum I00. The isolation at the 0.5 dB edges of each
passband is enhanced from �9:6 (for I00) to �25 (for I0)
dB. For an FDTD-aided design, one may start with
designing resonators that have spectra closest to the set
of exact solutions, then designs the whole system. Without
the first step, the algorithm may have no clue to search a
big design space and may never converge. The lossless
constraint should not be applied across the spectrum, as
discussed. Many techniques in traditional filter design [9]
can facilitate the OADM design.

Higher order Butterworth functions are highly desir-
able for an add-drop filter [10]. Our theory is also applied
to an n � 3 OADM having a third-order Butterworth
intensity profile �6

a

�!�!a	
6��6

a
. Figure 3 presents the solved

spectra of the two relevant ports in one band, along with a
reference lossless spectrum for the pass-through port.
Again, the remnant light in the pass-through port is
desirably reduced in the dropped frequency ranges.
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Also seen is the obvious flat-top line shape of the drop
port compared to the first-order case. The 0.5 to 30 dB
bandwidth ratio now increases to 0.22, indicating a
much sharper transition between the passband and the
stop band.

The crosstalks and losses at the crossings of the wave-
guides should not be a concern for conventional [11] or
PC-based [12] waveguides after optimizing the crossings.

In summary, we have proposed and analyzed a class of
waveguide-resonator structures that can be used as multi-
channel OADMs. Light is shown to completely transfer
between different waveguides. Some desirable features of
the optical spectra of these structures are also presented.
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