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Chiral Solitons in Nuclei: Saturation, EMC Effect, and Drell-Yan Experiments
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The chiral quark-soliton model of the nucleon contains a mechanism for an attractive interaction
between nucleons. This, along with the exchange of vector mesons between nucleons, is used to
compute the saturation properties of infinite nuclear matter. This provides a new way to assess the
effects of the nuclear medium on a nucleon that includes valence and sea quarks. We show that the
model simultaneously describes the nuclear EMC effect and the related Drell-Yan experiments.
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One frontier of strong interaction physics lies in the
intermediate range of length scales available to present
experiments where neither the fundamental theory, quan-
tum chromodynamics (QCD), nor its low energy effective
theory, chiral perturbation theory, have useful perturba-
tive expansions. Neither fundamental quarks nor point-
like hadrons provide a complete description, so including
the nonperturbative information that hadrons are bound
states of valence quarks in a polarized vacuum is neces-
sary. One way to probe these intermediate length scales
and this nonperturbative physics is to examine the short
distance structure of a large object. The prime example
is the European Muon Collaboration (EMC) effect [1]
where the short distance (~ 5 GeV or ~10~2 fm) struc-
ture of nuclei differs from that of a collection of
free nucleons. This measurement showed that bound nu-
cleons are different than free ones and implied that the
medium modifications could be significant for any nu-
clear observable [2]. Indeed, a recent paper [3] obtains
evidence for a medium modification of the elastic proton
form factor.

Our central concern is the depletion of the nuclear
structure function F4(x) in the valence quark regime
0.3 = x = 0.8. While the general interpretation is that a
valence quark in a bound nucleon has less momentum
than in a free one, corresponding to some increased
length scale, the specific mechanism for this has eluded
a universally accepted explanation for 20 years [2,4—-6].
A popular explanation is the so-called “binding” effect
which originates from a possible mechanism in which
mesons binding the nucleus carry momentum. An im-
portant consequence is that the mesonic presence would
enhance the antiquark content of the nucleus [7,8]. Such
an effect has not been seen in Drell-Yan experiments [9]
in which a quark in a proton beam annihilates with an
antiquark in a nuclear target producing a muon pair.
Furthermore, relativistic treatments, including the light-
cone approach needed to obtain the nucleon structure
function, of the binding effect with structureless hadrons
fail [10—13], suggesting that modifications of the internal
quark structure of the nucleon are required to explain the
deep inelastic scattering data.
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Any description of the EMC effect must be consistent
with the constraints set by both deep inelastic scattering
and Drell-Yan data. Thus a successful model must include
antiquarks as well as quarks and show how the medium
modifies both the valence and sea quark distributions. Our
purpose is to provide a mechanism for that modification
within the chiral quark-soliton (CQS) model [14-17].
This phenomenological model has many desirable qual-
ities: the ability to describe a wide class of hadron ob-
servables with surprising accuracy, the inclusion of
antiquarks, positivity of generalized parton distributions,
and a basis in QCD [16]. The model also predicted [18] the
recently discovered 6 exotic baryon resonance [19,20].
Here we show how the model describes nuclear saturation
properties, reproduces the EMC effect, and satisfies the
bounds on nuclear antiquark enhancement provided by
Drell-Yan experiments.

The CQS model Lagrangian with (anti)quark fields

W, ¥ and profile function O(r) is
L = i — Merwronyy, ()

where O(r — o) = 0 and ®(0) = —7 to produce a sol-
iton with unit winding number. The quark spectrum
consists of a single bound state and a filled negative
energy Dirac continuum; the vacuum is the filled negative
continuum with ® = 0. The wave functions in this spec-
trum provide the input for the quark and antiquark dis-
tributions used to calculate the nucleon structure
function.

We work to leading order in the number of colors
(N¢c = 3), with Ny = 2, and in the chiral limit. While
the former characterizes the primary source of theoretical
error, one could systematically expand in N to calculate
corrections. We take the constituent quark mass to be
M = 420 MeV, which reproduces, for example, the N-A
mass splitting at higher order in the N, expansion and
other observables [17].

The theory contains divergences that must be regulated.
We use a single Pauli-Villars subtraction as in Ref. [21]
because we follow that work to calculate the quark dis-
tribution functions. The Pauli-Villars mass is determined
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by reproducing the measured value of the pion decay
constant, f,. =93 MeV, with the relevant divergent
loop integral regularized using Mpy = 580 MeV. This
regularization also preserves the completeness of the
quark states [21].

The nucleon mass is given by a sum of the energy of a
single valence level (EV), and the regulated energy of the
soliton (Eg, equal to the energy in the negative Dirac
continuum with the energy in the vacuum subtracted)

M2
My = NcE + Eg(M) — ——

M, Eg(Mpy). 2

The field equation for the profile function is

p?;s(")
pi(r)’

where p! and p}; are the quark scalar and pseudoscalar
densities, respectively.

The dependence of nucleon properties on the nuclear
medium is incorporated in the model by simply letting
the quark scalar density in the field equation (3) contain a
(constant) contribution arising from other nucleons
present in symmetric nuclear matter. This models a scalar
interaction via the exchange of multiple pairs of pions
between nucleons. We take the scalar density to consist of
three terms: (1) the constant condensate value (i),
(in the vacuum or at large distances from a free nucleon),
(2) the valence contribution p?, and (3) the contribution
from the medium which takes the form of the convolution
of the nucleon p? and valence quark scalar densities as in
the quark-meson coupling (QMC) model [22-24]

O(r) = arctan

3)

p2(r) = (Yo + p¥(r) + f BroN(pt(r— ). (&)

We take the pseudoscalar density to have only the valence
term pjs = pb; the two other contributions analogous to
the first and third terms of Eq. (4) vanish due to symme-
tries of the QCD vacuum and nuclear matter. These
approximations to the densities neglect the precise form
of the negative continuum wave functions in Eq. (3). The
resulting free nucleon profile function has no discernible
difference from a fully self-consistent treatment, demon-
strating the excellence of this approximation.

We take the vacuum value of the chiral condensate in
Eq. (4) to be a free parameter, but in the single Pauli-
Villars regularization, the scalar and pseudoscalar den-
sities contain a divergence that cancels in the ratio Eq. (3)
[25]. A finite value of the ratio is obtained by normalizing
the densities so that the cancellation occurs (by dividing
the other terms in the numerator and denominator by the
same divergent quantity). This yields a free nucleon mass
that is independent of (i), (as is necessary because it is
divergent in single Pauli-Villars regularization) and a
medium contribution that enters only through the ratio
pY /(pip). While the vacuum value of the condensate
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does not vary by definition, the effective condensate
(o + pNS(kr), where S(kp) is an integral of p? [see
Eq. (4)], falls ~30% at nuclear density. This is consistent
with the model independent result [26] that predicts a
value 25%—-50% below the vacuum value.

The nucleon scalar density is determined by solving
the nuclear self-consistency equation

ke dk My(py)

QaY @+ My (P

The dependence of the nucleon mass, and any other
properties calculable in the model, on the Fermi momen-
tum ky enters through Eq. (5). Thus there are two coupled
self-consistency equations: one for the profile, Eq. (3),
and one for the density, Eq. (5). These are iterated until
the change in the nucleon mass Eq. (2) is as small as
desired for each value of the Fermi momentum. We use
the Kahana-Ripka (KR) basis [27], with momentum cut-
off and box size extrapolated to infinity, to evaluate the
energy eigenvalues and wave functions used as input for
the densities, nucleon mass, and quark distributions.

A phenomenological vector meson (mass m, =
770 MeV) exchanged between nucleons (but not quarks
in the same nucleon) is introduced [28] to obtain the
necessary short distance repulsion which stabilizes the
nucleus. The resulting energy per nucleon is

N —
N

p (&)

E 4

kr d3k 1 g2
- = VE + My (kp)? + =25 pglkp).
A pB(kp) (277_)3 N( F) 2m12) pB( F)

(6)

We now present the results. The mass of a free nucleon
is computed to be My (kr = 0) = 1209 MeV. The ~30%
difference is as expected in the model at leading order in
Nc. We evaluate the nucleon mass Eq. (2) and energy per
nucleon Eq. (6) as a function of k for three values of the
condensate. We plot B = E/A — My(0) in Fig. 1 where we

B [MeV]
&

1
kF [1/fm]

FIG. 1. Binding energy per nucleon as a function of Fermi
momentum fit to B = —15.75 MeV at the minimum for
(ppyy = —(225 MeV)?  (long-dashed line), —(210 MeV)?
(short-dashed line), and —(200 MeV)? (solid line). The box
and shaded region are the experimental uncertainty [29] in the
binding energy, density, and compressibility of nuclear matter.
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choose the vector meson coupling to fit B = —15.75 MeV
at the minimum.

We use the value —<$L//>(l)/ 3 =200 MeV, and vector
coupling g2/4m = 10.55, which gives a Fermi momen-
tum of k = 1.38 fm~! in nuclear matter consistent with
the known value k; = 1.35 = 0.05 fm~! [29]. The com-
pressibility is K = 348.5 MeV which is above the experi-
mental value K = 210 = 30 MeV, but well below the
Walecka model value of 560 MeV.

The isoscalar unpolarized distribution g(x) = u(x) +
d(x) is the leading order term in N, with the isovector
unpolarized quark distribution u(x) — d(x) smaller by a
factor ~1/N, and set to zero. The distributions are calcu-
lated using the KR basis at kx = 0 and kp = 1.38 fm™!
almost exactly as in Ref. [21] where the quark distribution
is given by the matrix element

q(x) = NeMy > (@, |(1 + ¥*y*)8(E, + p* — xMy)lip,),

)

with the regulated sum taken over occupied states. The
eigenvalues E, are determined from diagonalizing the
Hamiltonian, derived from the Lagrangian (1), in the KR
basis. The vector meson exchange is not explicit in Eq. (7)
because the initial, intermediate, and final states of the
struck and spectator quarks experience the same vector
potential, as demanded by consistency. Thus we include
the interaction of the debris of the struck nucleon with the
residual nucleus [23]. The antiquark distribution is given
by g(x) = —q(—x) where the sum is over unoccupied
states. We use the exact sea wave functions, and not the
approximation used in Eq. (4). The use of a finite basis
causes the distributions to be discontinuous. These dis-
tributions are smooth functions of x in the limit of infinite
momentum cutoff and box size, but numerical calcula-
tions are made at finite values and leave some residual
roughness. This is overcome in Ref. [21] by introducing a
smoothing function. We deviate from their procedure and
do not smooth the results; instead we find the subsequent
one-loop perturbative QCD evolution [30] to be sufficient.

These distributions are used as input at a scale of Q =
Mpy = 580 MeV for evolution to Q = 5 GeV in the case
of the quark singlet distribution ¢5(x) = g(x) + g(x) «
FY(x)/x at leading order in N. The EMC ratio function
is defined to be

Fé(xr QZ) kF)
AFév(-xx Q21 kF = O),

R(x, Q%) = (8)

FAx, Q2 kp) = f Ay fOVFY o)y, Q. kp).

X

The nucleon momentum distribution, following from a
light-cone approach, for any mean field theory of nuclear
matter [10] is
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OV =2z 01+ A= DB = 1+ 8, )[A} = (1))
F
()]

where Ap = ky/My and My = My(0) — 15.75 MeV.
The antiquark distribution g(x) is evolved to Q =
10 GeV for use in the Drell-Yan ratio g% /Ag, analogous
to Eq. (8). The EMC and Drell-Yan ratios are plotted in
Fig. 2. While the data shown in Fig. 2 are for large, but
finite, nuclei, our calculation reproduces the trend of both
sets of data. It falls slightly below the SLAC-E139 data
[31] due to the higher density of nuclear matter.

In Fig. 3 we show the quark, antiquark, singlet, and
valence (¢ = g — g) quark distributions weighted by x
for a free and bound nucleon at a scale Q = 5 GeV. There
is a large depletion in the bound nucleon valence distri-
bution in Fig. 3, that, if used to calculate the EMC ratio
(8), produces too large an effect. This large effect is
comparable to that of the QMC model impulse approxi-
mation calculation or the Guichon model [23] which
include only valence quarks. This valence effect is miti-
gated by a small enhancement in xg, consistent with the
Drell-Yan data, so that the singlet distribution has only a
moderate depletion consistent with the EMC effect.

A simple picture in terms of the uncertainty principle
is available. The influence of the nuclear medium on the
nucleon causes the root mean square radius of the baryon
density to increase by 2.4%. This corresponds to a de-
creased momentum and a depletion of the bound structure
function relative to the free one. This swelling is consis-
tent with a <6% increase as constrained by quasielastic
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FIG. 2. The EMC (top panel) and the Drell-Yan (bottom
panel) ratios at scales Q = 5 GeV and 10 GeV, respectively,
for nuclear matter. The data are for iron (empty boxes) and gold
(filled boxes) from SLAC-E139 (top panel) [31], for iron
(empty boxes) and tungsten (filled boxes) from FNAL-E772
(bottom panel) [9].
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FIG. 3. Clockwise from top left the distributions xg(x), xg(x),
xq"(x), and xg5(x) in a free (dashed lines) and bound (solid
lines) nucleon at a scale Q = 5 GeV. The valence distribution
q"(x)/2 is also shown in gray in the lower right graph.

inclusive electron-nucleus scattering data [32] and the
recent polarization transfer measurement [3].

We ignore the effects of shadowing, which occur when
the virtual photon striking the nucleus fluctuates into a
quark-antiquark pair over a distance ~1/2M yx exceed-
ing the internucleon separation. This causes a depletion in
the structure function for x < 0.1 and is relatively well
understood [2,4—-6] and so we do not reiterate those
results. Additionally, we ignore contributions from quan-
tum pion structure functions, which in this model propa-
gate through constituent quark loops, and would modify
the behavior at small x. These loops are suppressed by
O(1/N¢) and are not treated at leading order.

The present model provides a intuitive, qualitative
treatment that maintains consistency with all of the free
nucleon properties calculated by others [16,17]. It gives a
reasonable description of nuclear saturation properties,
reproduces the EMC effect, and satisfies the constraints
on the nuclear sea obtained from Drell-Yan experiments
with only two free parameters: (i), and g,,.

The central mechanism to explain the EMC effect is
that the nuclear medium provides an attractive scalar
interaction that modifies the nucleon wave function.
This is also the dominant mechanism in the QMC model
approach to the EMC effect [23] and also similar to the
quark delocalization approach [33]. The improvements
given here are the explicit computation of the effects of
the medium on the antiquark distributions so that con-
sistency with the Drell-Yan data could be verified and the
reduction of the number of input parameters and model
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assumptions. Our extension of the chiral quark-soliton
model to nuclear matter provides a new, consistent way to
calculate possible medium modifications of a variety of
observables that could be measured in experiments.
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