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Classical Chaos with Bose-Einstein Condensates in Tilted Optical Lattices
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A widely accepted definition of ‘‘quantum chaos’’ is ‘‘the behavior of a quantum system whose
classical limit is chaotic.’’ The dynamics of quantum-chaotic systems is nevertheless very different
from that of their classical counterparts. A fundamental reason for that is the linearity of Schrödinger
equation. In this paper, we study the quantum dynamics of an ultracold quantum degenerate gas in a
tilted optical lattice and show that it displays features very close to classical chaos. We show that its
phase space is organized according to the Kolmogorov-Arnold-Moser theorem.

DOI: 10.1103/PhysRevLett.91.210405 PACS numbers: 03.75.Lm, 05.45.–a, 03.75.Kk
described by a nonlinear quantum evolution equation, the
Gross-Pitaevskii equation (GPE). GPE has proven to be

inertial force F � �Mc�=2 appears, producing a
‘‘tilted’’ potential. In such a potential, quantum dynamics
The quantum dynamics of systems presenting chaotic
behavior in the classical limit has been a widely studied
subject in recent years, boosted, in particular, by experi-
ments using laser-cooled atoms [1–7]. An atomic-scale
analog of the kicked rotor is realized by placing laser-
cooled atoms in a pulsed standing laser wave, a system
that displays a well-known signature of quantum chaos,
the dynamical localization [8], present in time-periodic
systems, which consists in the suppression of the classi-
cal chaotic diffusion by quantum interferences. Another
well-known signature of quantum chaos, present in time-
independent systems, is the fact that the distribution of
energy levels takes the shape of a Wigner distribution, a
behavior experimentally evidenced, for example, in the
energy spectrum of Rydberg atoms in intense magnetic
fields. This signature clearly cannot have a classical
counterpart.

Quite generally, signatures of quantum chaos have no
direct relation to the corresponding classical dynamics.
There are fundamental reasons for this. One is that the
notion of phase-space orbit, fundamental in classical
dynamics, cannot be easily translated in the quantum
world, due to the uncertainty principle. The initial con-
ditions of a quantum system do not correspond to a single
point in the usual phase space �qi; pi�, as �qi�pi � �h=2.
One can, however, project the state of the system in a
basis, and define a generalized phase space formed by the
set of amplitudes; if the basis is adequately chosen, the
initial condition is represented by a point in such gener-
alized phase space. Even then, sensitivity to initial
conditions is not present, for the more fundamental rea-
son that the Schrödinger equation is linear. Nonlinearity
arises in classical physics because the dynamical
variables �qi; pi� are also parameters of the force. In the
case of the Schrödinger equation, the dynamical variable
is the wave function, whereas the potential depends on
�qi; pi�, and eventually on t, but not on the wave function.

A Bose-Einstein condensate (BEC) is a quantum object
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able to describe the BEC dynamics with a reasonable
precision on a wide range of situations [9]. GPE describes
the condensate as whole (neglecting the noncondensed
fraction), and includes a nonlinear term representing
particle-particle interactions. It is valid for temperatures
low enough compared to the critical temperature. If we
consider a cigar-shaped BEC whose transverse length L is
much smaller than the longitudinal length, the Gross-
Pitaevskii equation can be reduced to one dimension, and
reads

i �h
@ 
@t

� �H0 �U0j j
2� ; (1)

where H0 is the one-particle Hamiltonian, and U0 a
coupling constant describing the interaction among par-
ticles. U0 is related to the two-particle s-wave scattering
length as by U0 � 4� �h2asN=�L2M�, where N is the total
number of atoms, M is the mass of an atom, and the
condensate wave function is normalized to unity.
Contrary to the one-particle Schrödinger equation, this
equation is nonlinear in the dynamical variable  . Note
that, as U0 / N, the GPE nonlinearity has a collective
character: Modeling in an analogous way many-body
interactions in an assembly of N thermal atoms would
produce a much smaller nonlinear term.

The dynamics of one-dimensional, tilted, periodic
potentials has often been considered in recent literature,
both for free atoms [10–15], and for BECs [16–18]. A
tilted optical potential,

V � V0 cos

�
2�x
d

�
�Fx; (2)

is generated by superposing two counterpropagating laser
waves, one of frequency !L � kLc � 2�c=�L and the
other of frequency !L�1� �t�. This produces a standing
wave of step d � �L=2 whose nodes are accelerated with
an acceleration c�=2. In the (noninertial) reference frame
in which the nodes of the standing wave are at rest, an
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FIG. 1. Example of a chaotic evolution of a population. The
BEC is initially prepared on three neighbor WS states around
n � 0, with I�1 � 0:1, I0 � 0:6, I1 � 0:3, with phases ’�1 �
0, ’0 � 0, ’1 � �. Plot (a) displays the evolution of the
population I0 � jh’0j ij

2 of the central (most populated) well.
Plot (b) displays the spectrum of this evolution. The result,
obtained by numerical integration of the GPE, shows a chaotic
behavior. Parameters are V0 � 5, F � 0:25, and g � 0:2.
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consists in spatial oscillations over many steps of the
potential, known as Bloch oscillations, as recently ex-
perimentally observed with both individual atoms [10]
and (weakly interacting, low U0) Bose-Einstein conden-
sates [17].

We shall consider, in what follows, the particular form
of the GPE given by

i
@ �x; t�
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�

�
�
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2m
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@x2
� V0 cos�2�x� � Fx� gj j2

�
 ;

(3)

where we introduced normalized units in which space is
measured in units of the potential step d, energy in units
of the recoil energy ER � �h2k2L=2M, time in units of
�h=ER, force in units of 2ER=�L, m � �2=2, and g �
8asN=�L

2kL� � �2=�L��U0=ER� is the (1D) nonlinear pa-
rameter ( �h � 1 in such units). The eigenstates of the
linear part of the Hamiltonian

H0 � �
1

2m
@2

@x2
� V0 cos�2�x� � Fx (4)

are the so-called Wannier-Stark (WS) states [19]. We
assume that the depth of the potential V0 is large enough
to support well localized WS states, and that the dynam-
ics can be described by the lowest-energy WS state in
each well [15]. We note by ’n the lowest state mainly
localized in the nth well. The invariance of WS states
under translations by an integer number of potential
steps, ’n�x� � ’0�x� n�, is related to shifts of the eigen-
energies given by En � E0 � nF (E0 is an energy con-
stant that can be eliminated), forming the so-called
Wannier-Stark ladder of equally spaced levels [20], that
define the Bloch (or Bohr) frequency of the system !B �
Fd= �h. Figure 1 displays an example of evolution of a BEC
in a tilted potential, obtained by numerical integration
via the split operator method [21], and the observed
behavior suggests the existence of chaos in a classical
sense.

In order to get a simpler description and a better under-
standing of the BEC dynamics, we now introduce a
model obtained by projecting the wave function  over
the WS states:

 �x; t� �
X
n

cn�t�’n�x�; (5)

where the cn�t� 	
�����
In

p
ei$n are complex amplitudes. This

development is justified provided that g & 1 [22], which
corresponds, taking typical values for the parameters, to
N ’ 7� 104. Reporting Eq. (5) in Eq. (3) gives the evo-
lution equation:

i _ccn � nFcn � g
X
klm

&nklmc

kclcm: (6)

where the &nklm are defined (choosing phases such that ’n
is a real function) by
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&nklm �
Z 1

�1
’k�x�’l�x�’m�x�’n�x� dx: (7)

Because of invariance under discrete spatial translations
of the WS states, one easily shows that &nk�n;l�n;m�n �
&0
klm 	 &klm and, thus,

i _ccn � nFcn � g
X
klm

&klmcn�kcn�lcn�m: (8)

As WS are essentially localized in a well, we can keep
only couplings between nearest neighbors, that is, involv-
ing &000, &00�1 [23]. The equation of motion then sim-
plifies to
i _ccn � nFcn � g&000cnjcnj2

� g�&00�1cn�1 � &001cn�1�c
2
n

� g�2&00�1cn�1 � 2&001cn�1�jcnj
2

� g�&001jcn�1j
2cn�1 � &00�1jcn�1j

2cn�1�; (9)

where we used the invariance of the &klm coefficients
under any permutation of indexes. Figure 2 displays the
evolution obtained from the model, for the same parame-
ters and the same initial conditions as in Fig. 1. The
temporal evolution is not identical to that shown in
Fig. 1 because of the sensitivity of chaotic evolution to
small perturbations, but the dynamical behavior has the
same characteristics. This is better evidenced by compar-
ing the spectra of both evolutions, shown in part (b) of
the figures. The model is thus able to reproduce the
dynamics of the GPE.

It is useful to write evolution equations for the popu-
lation In � jcnj2 and the phase $n:

_IIn � 2")g
�����
In

p
�
���������
In�1

p
�In�1 � *In� sin�$n�1 � $n�

�
���������
In�1

p
�In � *In�1� sin�$n�1 � $n��;

(10)
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FIG. 3. Poincaré section of the generalized (quantum) phase
space, corresponding to the plane �I0; $1 � $0�. The plane is
defined by I�1 � 0:1, $�1 � $0, all other angles and actions are
zero, except I1 � 0:9� I0, imposed by the normalization con-
dition. One observes different types of dynamics, ranging from
regular to chaotic. The arrow indicates the 1:1 resonance,
and one can see around it various frequency-locking signatures
evidenced by the presence stability islands. We verified that the
calculations made either with the discrete model or by direct
numerical integration of the GPE produce the same topology.
Parameters are the same as in Fig. 1, except that g � 0:25.

FIG. 2. Same as Fig. 1, but the calculation was made using the
discrete model of Eq. (9). Plot (a) displays the same kind of
chaotic dynamics as in Fig. 1, and plot (b) shows that the
spectrum of the evolution is virtually the same.
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_$$n ��nF� )gIn

�
")g�����
In

p �
���������
In�1

p
�In�1 � 3*In� cos�$n�1 � $n�

�
���������
In�1

p
�3In � *In�1� cos�$n�1 � $n��;

(11)

with )g � g=jgj, * � &001=&00�1 � �1, and we have
rescaled the time variable as t! t=�jgj&000� and the force
as F ! F=�jgj&000�. Parameter " � &00�1=&000 is small
since &00�1=&000 � 1 [23]. If we neglect interwell par-
ticle interactions, i.e., for " � 0, all In � In�0� are con-
stants of motion, and $n � $n�0� �!nt increases linearly
with time with frequency !n � �nF� )gIn. The vari-
ables �In; $n� have then an ‘‘action-angle’’ structure [24]
and the system is integrable. The trajectories lay on tori
defined by the values of the constants of motion [25]. In
usual units, the frequencies !n are

!n � n!B �
U0&000

�h
In; (12)

where the second term on the right-hand side represents a
‘‘frequency pulling’’ effect due to the nonlinearity.
Moreover, one can verify that Eqs. (10) and (11) can be
obtained by the usual prescription, _IIn � �@H�=�@$n� and
_$$n � ��@H�=�@In� from the Hamiltonian given by

H �
X
n

�nFIn �
)g
2
I2n � 2)g"

�������������
InIn�1

p
�*In � In�1�

� cos�$n�1 � $n��

�H0�I� � "
X
n

�Vn�I� cos�$n�1 � $n��: (13)

The Hamiltonian is the sum of an integrable part and a
nonintegrable ‘‘perturbation.’’ This form strongly evokes
the Kolmogorov-Arnold-Moser (KAM) theorem [25]. If
0< "� 1, the system is said to be quasi-integrable and
the KAM theorem states that the tori are only slightly
deformed if initially the system is far from its resonances.
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A resonance is defined by
P
n‘n!n � 0, with ‘n integer.

Note that the KAM-like structure of our system depends
only on the smallness of the parameter ", which can be
modified by changing the properties of the potential.

In order to illustrate the above conclusions, consider
the simple case in which the BEC initially projects only
on three adjacent WS states, labeled �1, 0, 1. During the
evolution, the spread of the wave function to other WS
states is very small [26]. We performed a numerical
integration of the equations of motion and plotted a
Poincaré section [of the generalized phase-space �I; $�],
corresponding to the plane �I0; $1 � $0�, displayed in
Fig. 3, which presents characteristic features of a classi-
cally chaotic system, despite the fact that a BEC is a
quantum object.

A principal resonance is observed when the ratio of two
frequencies is a rational number, e.g., !n=!m � a=b (a
and b integers). The simplest case, a � b � 1, called
‘‘1:1’’ resonance, corresponds to the resonance condition
[cf. Equation (12)]

�h!B � U0&000�I0 � I1�: (14)

for the two neighbor sites n � 0, m � 1. It has a simple
interpretation: The energy levels corresponding to the
two wells become quasidegenerate due to the nonlinear
shift, thus favoring population exchanges. Higher order
resonances affect smaller regions of the phase space.
Thus, in order to observe chaotic behavior, the initial
wave function shall not be too smoothly distributed on
the lattice: If all In are almost identical, only higher order
resonances will show up. The arrow in Fig. 3 indicates the
1:1 resonance, which is surrounded by other signatures of
frequency locking, characterized by the presence of
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stability islands. The groups of three and five stability
islands correspond, respectively, to the resonances 3:1 and
5:1. The quantum phase space has thus a KAM-like
structure. Far from resonances, regular motion is dis-
played (left part of the Poincaré section). In this case, the
nonlinearity introduces population-dependent frequen-
cies due to the frequency pulling effect. The emergence
of these frequencies eventually blur Bloch oscillations
(which would correspond to vertical straight lines).

In conclusion, we have presented in this paper a quan-
tum system that displays a behavior very similar to
classical chaos, thanks to the presence of a nonlinearity
due to many-body interactions (studies of chaotic dynam-
ics in other quantum systems can be found, e.g., in
Refs. [27–29]). As we emphasized above, this is not
quantum chaos, at least in the most widely accepted
definition of the term. It is closer to classical Hamil-
tonian chaos, except for the fact that it is observed in a
generalized phase space. The structure of the phase space
can be interpreted in the general frame of the KAM
theorem. This leaves open many stimulating questions:
Are the conditions leading to the Gross-Pitaevskii ap-
proach essential for observing ‘‘classical’’ chaos with a
BEC, or can the same phenomenon manifest itself in less
restrictive conditions? What are the necessary and suffi-
cient conditions for observing classical chaos with BECs?
Can one find experimentally realizable situations in
which a quantum effect (e.g., quantum interference) co-
exists with chaos, and how will chaos affect it? How is
classical chaos with BECs affected by decoherence?
These few questions suggest that the present work opens
an interesting way for investigations of the quantum-
classical limit in mesoscopic systems.
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