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This paper presents a consistent quantum mechanical model of Child-Langmuir (CL) law, including
electron exchange-correlation interaction, electrode’s surface curvature, and finite emitter area. The
classical value of the CL law is increased by a larger factor due to the electron tunneling through the
space-charge potential, and the electron exchange-correlation interaction becomes important when
the applied gap voltage Vg and the gap spacing D are, respectively, on the order of Hartree energy level,
and nanometer scale. It is found that the classical scaling of V3=2

g and D�2 is no longer valid in the
quantum regime, and a new scaling of V1=2

g and D�4 is established. The smooth transition from the
classical regime to the quantum regime is also demonstrated.
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few investigations of CL law in the quantum regime
[10,11]. In the 1D quantum models, mean field theory
has been used to calculate the CL current density by

electron gas of density n, under the Kohn-Sham local
density approximation (LDA), where �x is the exchange
energy contribution [13] and �c is the correlation energy
The classical Child-Langmuir (CL) law [1] gives the
maximum current density allowed for steady-state elec-
tron beam transport across a gap of gap spacingD and gap
voltage Vg. In the one-dimensional (1D) planar, and non-
relativistic model (with zero electron emission energy),
the classical 1D CL law is

JCL �
4�0
9

�����
2e
m

r
V3=2
g

D2 ; (1)

where e and m are the charge and mass of the electron,
respectively, and �0 is the free space permittivity. From
the equation, the classical scaling of the limiting current
density JCL to the 3=2’s power of gap voltage (JCL /
V3=2
g ), and to the inverse squared power of gap spacing

(JCL / D�2), is widely used in the fields of high-current
emission diodes, vacuum microelectronics, high power
microwave sources, accelerator physics, and sheath
physics. While Eq. (1) is easy to derive, it was only
recently that the 1D classical CL law was extended to a
two-dimensional (2D) model with simulation results [2],
and with analytical solutions [3]. The effects of nonuni-
form current emission [4] from a finite emitter area and of
the current’s short pulse [5] have also been studied.
Recent developments of the multidimensional CL law in
classical regime can be found in a review paper [6].

In the emerging fields of nanotechnology, nanostruc-
tures such as nanodiodes, nanotriodes, and nanogaps
ranging from sub-10 nm to 100’s of nm are readily fab-
ricated [7–9]. In such a nanometer scale, it is of interest to
study the intense beam-gap interaction, such as the limit-
ing current density (or CL law) for a nanosized gap,
where quantum effects are important. However, com-
pared to the classical models [1–6], there are relatively
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assuming that the electron density in the gap is high
enough to include only the electron space-charge field,
but not for the electron quantum interaction (the exclu-
sion principle is ignored) [10,11]. This assumption is
clearly not valid when the electron’s energy scale is com-
parable to the Hartree energy, in which case the electron
exchange-correlation interaction cannot be ignored.

Thus, in this context, several interesting questions
arise: Is the electron exchange-correlation interaction
important for a wide range of gap voltage and gap spac-
ing? Are the classical scaling of V3=2

g andD�2 valid in the
quantum regime? What are the equivalent cylindrical and
spherical CL laws in the quantum regime? How does one
derive a simple 2D quantum CL law? This Letter ad-
dresses these questions.

Consider electrons with emission energy E (with re-
spect to Fermi energy, EF) injected normally into a
nanosize gap with a gap spacing D, where the emitter
(x � rk) is grounded, and the collector (x � rk �D) is
held at a dc voltage Vg. Using mean field theory, we solve
the time-independent Schrödinger equation, the Poisson
equation, and the charge conservation relation to obtain
the mean electron density profile inside the gap for a given
current density J. From the calculated density profile, we
use the Kohn-Sham density functional theory [12] to
calculate the electron exchange-correlation potential (in
terms of the Hartree energy EH):

Vxc � �xc �
rS
3

d�xc
drS

; (2)

where rS is the local Seitz radius (4�nr3S=3 � 1), in terms
of the Bohr radius a0. Here, the �xc � �x � �c is the
exchange-correlation energy per particle for a uniform
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FIG. 1 (color online). The normalized quantum CL law Q as
a function of � for various �g � 10�2 to 102 (solid lines: top
to bottom), �g 	 1 (dashed line), and classical limit (dash-
dotted line).
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contribution [14]. They are

�x � �
3

4

�
3

2�

�
2=3 1

rS
; (3a)

�c � �2A�1� a1rS� ln
�
1�

1=2A
�

�
; (3b)

where �� b1
�����
rS

p
�b2rS�b3r

3=2
S �b4r

c�1
S , and (c; A; a1;

b1; b2; b3; b4) are parametrized constants under random
phase approximation [15].

For convenience, we introduce the normalized parame-
ters: 
xx � x=D, � � V=Vg, � � D=�0 is the normalized
gap spacing, �g � eVg=EH is the normalized gap volt-
age, � � �E� EF�=eVg is the normalized electron
emission energy, and q2 � n=n0 � j j2=n0 is the nor-
malized electron density. The normalized scales �0 �����������������������

h2=2emVg

q
is the electron de Broglie wavelength at Vg,

n0�2�0Vg=3eD2 is the density scale, EH�e2=4��0a0�
27:2 eV is the Hartree energy, and a0 � 4��0 
h

2=me2 �
0:0529 nm is the Bohr radius.

For a given gap spacing D and gap voltage Vg, � mea-
sures the ratio of gap spacing to the electron de Broglie
wavelength, and �g measures the ratio of gap voltage to
the Hartree energy, where �	 1 and �g 	 1 are the
classical limits. In terms of the normalized parameters,
the time-independent Schrödinger equation, the Poisson
equation, and the charge conservation relation can be
rewritten into a two-coupled nonlinear equation of q� 
xx�
and �� 
xx�:

q00 �
N

xx
q0 ��2

�
�����xc �

4

9

 2�N�R2N


xx2Nq4

�
q� 0; (4)

�00 �
N

xx
�0 �

2

3
q2; (5)

where the prime denotes the derivative with respective to

xx. Here, �xc�<0� 
 �x ��c � Vxc�rS�=�g, and Vxc�rS�
is the exchange-correlation potential given in Eqs. (2) and
(3), which is a function of normalized density q2� 
xx�
through the dependence of rS� 
xx� � �3�=2�gq� 
xx��2=3. In
Eqs. (4) and (5), the integer N � 0; 1; 2 denotes three
basic geometries: planar (N � 0), cylindrical (N � 1),
spherical (N � 2); and the parameters  �N� are, re-
spectively, the normalized current density, normalized
current line density, and normalized total current. The
normalizations are  �0� � J=JCL,  �1� � J=2�RDJCL,
and  �2� � J=4�R2D2JCL, where R � rk=D measures
the curvature of the gap with respect to the gap spacingD.

In deriving Eqs. (4) and (5), we have assumed that
the electron wave function is of complex form  ������
n0

p
q� 
xx�exp�i$� 
xx��, where q� 
xx� and $� 
xx� � 2

3 �N�R
N

����
�

p
�R


xx
R�1 
xx

�Nq�2� 
xx�d 
xx� $�R� 1� are, respectively, the nor-
malized real functions of the wave amplitude and phase.
To obtain the boundary conditions for the equations, we
match the wave function  to a transmitted plane wave at
the collector ( 
xx � R� 1), where the transmitted plane
208303-2
wave is obtained from solving Eq. (4) at �xc � 0,
 �N� � 0, and � � ��R� 1� � 1. The boundary condi-
tions for Eqs. (4) and (5) are

��R� � 0; (6a)

��R� 1� � 1; (6b)

q�R� 1� �

�������������������������
2 �N�RN=3

p
�1� ��1=4�R� 1�N=2

; (6c)

q0�R� 1� � ��R� 1�N=2%�N�q�R� 1�; (6d)

where %�N� � 0, &=
�������������
R� 1

p
, and 1=�R� 1�2 forN � 0, 1,

and 2, respectively. Here, & � �J0J1 � Y0Y1�=�J20 � Y2
0�

and J0; J1; Y0; Y1 are the Bessel functions evaluated at the
argument 
xx � ��R� 1�

������������
1� �

p
. With the boundary con-

ditions, we determine the quantum CL law, through the
maximum value of �N�, defined as Q�N�. For >  Q,
solutions to Eqs. (4) and (5) no longer exist.

In the classical limit at �	 1 and �g 	 1, Eqs. (4)
and (5) become

�00 �
N

xx
�0 �

4

9
 �N�

RN


xxN
�������������
���

p ; (7)

which is the governing equation (independent of � and
�g) to calculate the maximum value of Q�N� �  CL�N�
in the classical regime. For a planar configuration
(N � 0) at zero emission energy (� � 0), Eq. (7) simply
gives  Q � 1, which recovers the 1D classical CL law:
JQ � JCL [1].

Figure 1 shows the calculated  Q as a function of � for
various values of �g at � � 0 and N � 0 (planar). For a
given �g,  Q increases with decreasing values of
�(quantum regime) and exceeds the classically predicted
values when � & 10. The value of  Q is roughly propor-
tional to ��2 at small �, and this indicates that JQ / D�4

is the correct scaling in the quantum regime for small D,
as compared to the classical scaling of JCL / D�2. From
208303-2
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the figure, we also see that the enhancement of  Q is
more dominant at small �g due to electron exchange-
correlation interaction, and previous results are recovered
[10,11] at �g 	 1 (dashed line). This last statement im-
plies that electron exchange-correlation interaction (�xc)
cannot be ignored at low gap voltage when it is on the
order of Hartree energy level.

To investigate the scaling of limiting current to gap
voltage in the quantum regime, the product of  Q and
V3=2
g is plotted in Fig. 2 as a function of Vg for various

values of D (solid lines). It is clear that the scaling of the
limiting current density to the 3=2’s power of gap voltage
is no longer valid for small Vg at a fixed D, and the new
scaling is JQ / V1=2

g in the quantum regime for small Vg.
The cases with no exchange-correlation interaction,
�xc � 0 (dashed lines), and the classical limit (short
dashed line) are also plotted for comparison. The com-
parison proves the importance of the electron exchange-
correlation interaction at small Vg and D.

According to the classical CL law, the limiting cur-
rent density ( Q � 1) exists only for non-negative
electron emission energy (� � 0). However, there is
finite probability of electron tunneling in the quantum
regime for negative electron emission energy (� < 0). In
Fig. 3(a), we show  Q as a function of D at Vg � 1 V for
various values of � � 0:5 to �0:5. For � < 0, we see that
 Q ! 0 decreases sharply from the quantum regime to
the classical regime with an increase of D. In Fig. 3(b),
we show the boundary of the transition between the
quantum and the classical regime at E� EF �eV� �
�0:2, �0:3, and �0:5, where the boundary is defined
as the calculated values of D at  Q � 1 for a given
gap voltage Vg. For example, at E� EF � �0:2 eV,
the boundaries are D � 63 nm and D � 240 nm for
Vg � 1 V and 10 V, respectively.
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FIG. 2 (color online). The values of  QV
3=2
g as a function of

gap voltage Vg (volt) for various gap spacing D � 1, 10, and
100 nm (solid lines: top to bottom). The dashed lines are
without an exchange-correlation term (�xc � 0) for D � 10
and 100 nm (top to bottom), and the short-dashed line is the
classical limit.
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In Fig. 4(a), we show the equivalent cylindrical (N�1)
and spherical (N � 2) models of the quantum CL law for
D � 10 nm (solid lines) and D � 100 nm (dashed lines)
at � � 0 and Vg � 1 V. For comparison, calculations at
D � 10 nm and Vg � 10 V are also plotted, which show
little differences between Vg � 1 V and Vg � 10 V.
From the figure, we see that the limiting current  �N �
1; 2� (with respect to  �N � 0�) increases with small
values of R, and it recovers to the planar case at R >
100. Note that  �N � 2� is larger than  �N � 1� for a
given R, Vg, and D, and that at a fixed value of N the
curves in Fig. 4(a) are insensitive to D and Vg over the
range studied.

It has been shown recently that the 1D classical CL law
can be extended analytically to a simple 2D model by
using only the 1D electron density profile, and the ana-
lytical 2D classical CL law [3] agrees very well with
simulation results [2]. Pretending that the same method
may be applied to quantum corrections, we obtain the
following expressions for  Q�2D�:

 Q�2D�

 Q�1D�
� 1�

4

�
D
W
+; (8a)

 Q�2D�

 Q�1D�
� 1�

D
R
+; (8b)

 Q�2D�

 Q�1D�
� 1�

�
4

�
D
W

�

�
1�

2

�

�
D
R

�
+; (8c)

for an infinitely long emitting strip of width W, a circu-
lar emitting patch of radius R, and an emitting ellipse
of semiaxes R and W=2<R, respectively. Here, the
parameter + measures the mean position of the electrons
in the gap, and it is a function of � and �g, defined as
+��;�g� �

R
1
0 
xxq

2� 
xx�d 
xx=
R
1
0 q

2� 
xx�d 
xx, where q2� 
xx� is the
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FIG. 3 (color online). (a) The normalized quantum CL law
 Q as a function of gap spacing D (nm) for various values
of � � �E� EF�=eVg � 0:5 to �0:5 at gap voltage Vg � 1 V.
(b) The boundary of the transition from the quantum region
(small D) to the classical region (large D) forE� EF �eV� �
�0:2, �0:3, and �0:5.
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FIG. 4 (color online). (a) The ratio of  Q�N� to  Q�N � 0�
as a function of the normalized electrode’s curvature R at gap
voltage Vg � 1 V for gap spacing: D � 10 nm (solid line) and
D � 100 nm (dashed line), where N � 1 and N � 2 are cylin-
drical and spherical geometry, respectively. The symbols are
for Vg � 10 V and D � 10 nm: triangle (N � 2) and rectangle
(N � 1). (b) The mean location of electrons + as a function of
gap voltage Vg (volt) for various values of gap spacing D � 10,
100, and 1000 nm. The classical limit is + � 0:25 (dashed line).
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normalized 1D electron density profile calculated from
solving Eqs. (4) and (5) at  �  Q�1D� at N � 0.
Figure 4(b) gives the values of + as a function Vg at D �
10 nm, D � 100 nm, and D � 1000 nm. In the limit of
�	 1 and �g 	 1, we have q2 / 
xx�2=3, + becomes + �
1=4, and Eqs. (8) recover the classical limits [3].

To see the effects of the quantum corrections, consider
a circular emitter of radius R � 5 nm subject to a gap
voltage Vg � 9 V with a gap spacing D � 100 nm, with
an average electric field of 0:09 V=nm. Our model yields
a maximum current density of 7:7� 106 A=cm2, in
which the quantum enhancement and 2D geometrical
enhancement is, respectively,  Q � 1:65 and 7.4
[cf. Eq. (8b)]. This current density happens to be in the
range of 6 to 7� 106 A=cm2, a value that is inferred from
an advanced multiwall carbon nanotube emitter with a
radius of 5 nm, subject to a gap voltage of about 120 V
across a separation of 1:34  m [16]. Note that the average
electric field in the latter case is also 0:09 V=nm, with no
electrical breakdown reported [16].

In this formulation, we have assumed a slowly varying
electron density in the gap, where the electron exchange-
correlation potential depends only on the local electron
density (using LDA). This assumption is valid since the
spatial variation of electron density in our calculation is
on the order of gap spacing which is larger than the
atomic scale (not shown). Note this model has also
ignored the electron emission mechanisms in the vicinity
of the surface, where the surface properties of the mate-
rials such as local energy of states, dipole due to charge
penetration, and nature of ion lattice are ignored. It is
208303-4
important to note that these effects may become im-
portant when the gap spacing is extremely small, such
as D< 1 nm. The effects of electron density inhomoge-
neity, the comparison of other density functional theories,
quantum fluctuations, and surface properties will be the
subjects of future studies.

In conclusion, using mean field theory and LDA theory,
a consistent and exact 1D quantum mechanical model of
Child-Langmuir law, including the electron exclusion
principle, is established for planar, cylindrical, and
spherical geometries. For the first time, a new scaling of
the Child-Langmuir law in the quantum regime, JQ /
V1=2
g and JQ / D�4, is established for small Vg and D.

The model provides an upper limit of electron current
density for steady-state electron beam propagation in a
nanosized gap, and it is independent of the nature of the
electron emission process. A simple 2D quantum model is
also developed based on the exact 1D model.
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