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Reaction-diffusion systems are of considerable importance in many areas of physical sciences. For
many reasons, an external manipulation of the dynamics of these processes is desirable. Here we show
numerically how spatiotemporal behavior like pattern formation and wave propagation in a two
component nonlinear reaction-diffusion model of bacterial chemotaxis can be externally controlled.
We formulate the control goal as an objective functional and apply numerical optimization for the

solution of the resulting control problem.
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Nonequilibrium processes in open physicochemical
systems are the basis for many aspects of the high degree
of structure and organization that is observed throughout
nature [1]. Nonlinear chemical and biochemical reaction
processes far from equilibrium coupled with diffusion
underlie most mechanisms for spatiotemporal pattern
formation and self-organization [2,3].

As experimental techniques become more and more
accurate and provide detailed quantitative data for mod-
eling complex dynamical systems, especially from the
applicational point of view there is increasing interest in
controlling these systems. External control in this context
means to influence the system by interference from its
surroundings in order to achieve specific desired behavior.
Control of self-organization in spatially distributed and
highly nonlinear dynamical systems is an ambitious goal,
and modeling is inevitably required in that context be-
cause there is no intuitive way of specific control.

Heterogeneous catalysis is an example of a complex
process which is central for many technical processes for
production of chemicals, and aspects of production effi-
ciency and selectivity are important issues. Experimental
observations using modern surface spectroscopy have
shown that pattern formation dynamics are involved
here which influence the whole process considerably [4].
Recently, Ertl and co-workers showed numerically and
experimentally that turbulent surface patterns in CO
oxidation on platinum can be controlled using global
delayed feedback [5]. Chaos control ideas [6] have been
used to design wave propagation patterns in excitable
media [7], propagating wave segments could be stabilized
[8], and oscillatory cluster patterns were induced in the
photosensitive Belousov-Zhabotinsky reaction [9]. These
studies are based on the introduction of a feedback func-
tion for either local gradient control [7] or global control
[5,8,9] fed back into the system. Specific targeting of
spatiotemporal patterns has been investigated in [10,11].
Here, one point observation and related feedback control
was shown to drive a spatially extended system to par-
ticular structures. In [12], control of spiral wave move-
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ment in excitable media and its suppression have been
studied numerically by introducing spatial inhomogene-
ities into the medium, and turbulence control and syn-
chronization based on the Ginzburg-Landau equation
model have been investigated in [13]. Pertsov et al [14]
analyze spiral wave control in cardiac tissue by small
parameter gradients. Also, in nonlinear optics feedback
control of pattern formation has been discussed [15].
None of these studies allow for a systematic way
of influencing the systems with respect to general con-
trol aims.

Here we show numerically for a two component reac-
tion-diffusion model describing bacterial chemotaxis that
it is possible to systematically control spatiotemporal
dynamical behavior. Our strategy does not interfere
with the system itself but operates as a boundary flux
control connecting the system and its surroundings. The
control aim is incorporated into an objective functional to
be minimized as a function of the control variables. The
objective represents in a mathematically suitable formu-
lation the deviation of the desired behavior from the real
controlled system dynamics.

The model equations are based on continuity equations
for both components and represent a system of parabolic
partial differential equations of reaction-diffusion type.
The 1D model equations, which have been proposed by
Tyson et al. [16,17], are
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The variable z(x, r) describes the cell density of E. coli
bacteria in a liquid medium cell culture; ¢(x, ) describes
the concentration of a chemical species called chemo-
attractant. The closed long thin (quasi-1D, x € [0, L])
tube containing the medium is modeled by assuming
no flux von Neumann boundary conditions z,(0,t) =
(L, 1) = ¢,(0, 1) = ¢,(L, ). Bacteria move in liquid

© 2003 The American Physical Society 208301-1



VOLUME 91, NUMBER 20

PHYSICAL REVIEW LETTERS

week ending
14 NOVEMBER 2003

medium without chemoattractant stochastically with al-
ternating periods of flagella driven movement along
straight lines and periods of chaotic tumbling without
moving forward [18]. This corresponds to a random walk
and can be modeled by Ficks diffusion law in the many
particle limit [19]. The second term in the first model
equation describes the influence of chemoattractant,
which is produced by the cells themselves, on the move-
ment of bacteria. Experimental observations confirm that
they move in an uphill direction of the chemoattractant
gradient.

Coupling of the nonlinear production kinetics, the
chemoattractant induced uphill movement of cells, and
the diffusion of both cells and chemoattractant in the
model (1) leads to complex spatiotemporal dynamics. In
experiments, patterns such as island formation and wave
propagation have been observed both in a quasi-1D
glass capillary system [20] and in the quasi-2D cell
chamber [21,22].

We reproduce the 1D patterns in numerical simulations
and get very similar results to those described in [16,17],
but we use completely different numerical methods which
are suited to treat the differential equations as constraints
in an algorithm for optimal control problems. Figures 1
and 2 show the results for two pattern scenarios depend-
ing on initial conditions for the system (1); the first is
island formation (bacterial clumps) induced by a random

is wave propagation due to a singular perturbation of
uniform cell density.

In order to control the spatiotemporal behavior of the
cell density, we introduced a nonzero chemoattractant
flux at the right-hand side boundary x = L of the 1D
system which could be realized experimentally by impos-
ing a semipermeable membrane with small pore size. The
boundary flux of chemoattractant is controlled by adjust-
ing the concentration of the chemoattractant in an exter-
nal reservoir. This external concentration is represented
by a control function uy(f) assumed to be piecewise con-
stant on small time intervals. The boundary flux ¢, (L, t)
of chemoattractant is modeled by ¢, (L, 1) = c(L, 1) —
uy(r). On the basis of this control scenario, we show
that the system can be forced to specific spatial cell
distributions.

The problem is solved by numerical solution of the
optimal control problem of minimizing the root mean
square deviation of a predetermined fixed cell distribution
zr(x) at time T from the real cell distribution z(x, T)
arising from the controlled system dynamics. The devia-
tion can be formulated in terms of L?> norm and the
resulting optimal control problem has the form

minF(u) := 1 |lz(x, T) — zz()|?
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Optionally, the optimal control problem can have free
end time 7, which in that case can be subject to optimi-
zation as well. This means that, with respect to a weight-
ing factor A, also time optimal controls can be computed.
The control function is assumed to be bounded to values
in [0,1]. The lower bound is due to the physical meaning
of uy(r) representing a concentration of chemoattractant.

After semidiscretization with respect to the spatial
variable x using second-order accurate finite difference
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FIG. 1. Simulation of island patterns in 1D chemotaxis sys-
tem (1), starting from a perturbed initial steady state z(x, 0) =
7o(x) = 1.0 £ 0.1 X rand, c(x,0) = ¢y(x) =0 with computer
generated random number rand € (0,1), L = 10, D = 0.33,
a = 80, and von Neumann boundary conditions z,(0,7) =
(L, 1) = ¢,(0,1) = ¢, (L, 1) = 0.
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approximation of the right-hand sides in equation system
(1), we obtain a high dimensional system of ordinary
differential equations. The L?-norm integral in the objec-
tive functional is discretized using trapezoidal rule, and
the resulting high dimensional optimal control problem is
solved with the advanced numerical methods imple-
mented in the optimal control package MUSCOD-II [23].
The MUScOD-II algorithm is based on a multiple shooting
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FIG. 2. Simulation of wave propagation in 1D chemotaxis
system (1), starting from a singular perturbation z(0,0) =
70(0) = 1.2, z(x,0) = zo(x) = 1.0 for x # 0, c(x, 0) = cp(x) =
0 of the initial steady state z(x, 0) = zo(x) = 1.0, c(x,0) =0,
L =10, D =0.33, « = 80, and von Neumann boundary con-
ditions z,(0, 1) = z,(L, 1) = ¢,(0,¢) = ¢, (L, 1) = 0.
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approach [23,24], where time discretization is carried out
implicitly on a rather coarse grid by specifying some
multiple shooting points. On each multiple shooting
interval, the large scale ordinary differential equa-
tion (ODE) system is integrated separately and control
functions are parametrized (for example, by piecewise
constant representation). The resulting nonlinear pro-
gramming problem is solved by a specially tailored se-
quential quadratic programming algorithm [23].

Figure 3 shows the numerical results for two different
control scenarios where specific cell distributions at a
fixed time 7 could be achieved by optimal boundary
control with piecewise constant control functions on
multiple shooting intervals [(n — 1)T/20, (nT)/20], n =
1,...,20. Obviously, it is possible to force the system to
even symmetric cell distributions by applying nonsym-
metric control and without interfering the system itself,
but only controlling a flux through the systems boundary.
Consequently, the intrinsic dynamical behavior of the
system seems to play a crucial role for its controllability.
Therefore, in general, unstable nonlinear dynamical sys-
tems may offer a great potential for external control
because of the immense spatiotemporal effects that can
be produced by selective perturbations induced from out-
side into the system.

From an applicational point of view, dynamical effects
such as pattern formation and exponentially growing
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FIG. 3. Enforcement of specific cell distributions according

to (2), starting from a randomly perturbed steady state as in
Fig. 1,L = 1, T fixed, D = 0.33, « = 80, von Neumann bound-
ary conditions z,(0, 1) = z,(L, r) = ¢,(0, t) = 0. A linear model
c (L, 1) = c(L, t) — ug(t) is used for the boundary flux control
at x = L, ug(t) is the controlled external chemoattractant con-
centration. Left: Real distribution z(x, T) at fixed time T = 1
(top) and T = 2 (bottom) arising from controlled system dy-
namics and desired cell distributions zp(x) = 1.5 X
exp[—10(x — 0.5)?] (top) and zy(x) = 1.5(1 — x?) (bottom).
Right: Corresponding optimal control functions uy(f) accord-
ing to problem (2) with A =0 computed with the optimal
control package MUSCOD-II.
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modes due to system instabilities are often undesired.
Figure 4 shows how pattern formation and wave propa-
gation in the chemotaxis system can be inhibited by a
boundary control. Here the objective functional of the
corresponding optimal control problem (2) is the devia-
tion from the (unstable) homogeneous cell distribution.
The induced perturbations for initial conditions are the
same as those shown in Figs. 1 and 2 for the simulation
results. In order to take the issue into account that inhi-
bition of wave propagation might be desired to be
achieved as fast as possible, we set up a time optimal
control scenario of type (2) with a small factor A. This
factor accounts for the relative weight of time optimality
compared to a specific control aim. Of course, the latter is
assumed to be predominant here. As can be concluded
from Fig. 4, the pattern formation can be inhibited and
the wave propagation can be reduced very efficiently in
optimal time.

The control functions for all scenarios described above
are nontrivial, and an interesting result is that the optimal
controls for the parabolic cell distribution (Fig. 3, bottom)
and the inhibition of pattern formation (Fig. 4, top) are
very similar. Obviously, here the same control strategy is
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FIG. 4. Top: Inhibition of pattern formation according to (2),
starting from a randomly perturbed steady state as in Fig. 1,
L=1,T=2 fixed, D =0.33, «a = 80, A = 0, von Neumann
boundary conditions z,(0, t) = z,(L, t) = ¢,(0, 1) = 0. A linear
model ¢, (L, ) = (L, t) — uy(¢) is used for the boundary flux
control at x = L, uy(t) is the controlled external chemoattrac-
tant concentration. Bottom: Inhibition of wave propagation,
starting from a singularly perturbed initial steady state (arrow
indicates the perturbation at x = 0) as in Fig. 2, L = 1, T free
and subject to minimization. Left: Real distributions z(x, T) at
fixed time 7 =2 (top) and optimal time 7 = 3.7 (bottom)
arising from controlled system dynamics and desired homoge-
neous cell distributions z7(x) = 1.0. Right: Corresponding op-
timal control functions u(#) according to control problem (2)
with A = 0 (top) and A = 0.001 (bottom) computed with the
optimal control package MUSCOD-IL
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used which resembles to some extent a periodic regular
oscillation of the boundary flux with increasing ampli-
tude. There is only a very small quantitative difference
between the optimal control functions for both scenarios.

We have shown here that it is possible to externally
control spatially distributed nonlinear dynamical systems
with respect to specific control aims concerning spatio-
temporal behavior of these systems. The key idea was to
formulate the control aim as an optimization problem and
to minimize the deviation from specific desired dynami-
cal behavior. In order to realize such control scenarios, it
is inevitable to model the systems under consideration and
make use of further mathematical ideas from optimal
control theory. The advanced optimal control tool
MUSCOD-II allows numerical computation of optimal con-
trols for systems of nonlinear parabolic partial differ-
ential equations describing spatiotemporal dynamics. In
general, the software MUSCOD-II is suitable for solving
optimal control problems for very large ODE systems,
differential-algebraic equations, and after spatial discre-
tization also parabolic partial differential equations. In
principle, our boundary control scenario used for the
chemotaxis model can be applied for arbitrary chemical
reaction-diffusion systems if the influx of at least one
component can be externally adjusted and an accurate
model is available.

Specific control is believed to have great influence on
technical processes and, in particular, biological systems.
In biology, self-organizing systems play a dominant role
as the fundamental physical basis for the phenomenon
“life”” [25]. Any form of functionality in living cells is
strictly related to spatiotemporal biological structure and
dynamics of biochemical systems far from equilibrium.
Because of elaborate experimental techniques from mo-
lecular and cell biology, many biosystems become acces-
sible to modeling [26,27], and detailed understanding of
cellular processes and finally their external control may
play a crucial role in future medicine and drug develop-
ment [28].

There is ongoing research to extend the basic control
ideas described here to 2D systems and to make use of
optimization based nonlinear model predictive control
(NMPC) strategies [29,30] in order to control also tran-
sient dynamics of spatially distributed systems on mov-
ing time horizons. Thus far, we referred only to a fixed
time horizon; NMPC would allow specific trajectory
tracking.
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