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Principal Components of the Protein Dynamical Transition
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Proteins exhibit a solvent-driven dynamical transition at 180–220 K, manifested by nonlinearity in
the temperature dependence of the average mean-square displacement. Here, molecular dynamics
simulations of hydrated myoglobin show that the onset of the transition at �180 K is characterized by
the appearance of a single double-well principal component mode involving a global motion of two
groups of helices. As the temperature is raised a few more quasiharmonic and multiminimum
components successively appear. The results indicate an underlying simplicity in the protein dynamical
transition.
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CHARMM program [25], version 27b2. Details of the simu-
lation setup have been reported previously [19]. The

this, a coefficient ckl, projecting the normal mode vector
space onto that of the principal components, is calculated:
Internal dynamics are essential to protein function.
Experimental and computational work have shown that
proteins exhibit a dynamical transition at �180–220 K,
manifested by an increase in the average atomic mean-
square displacement for internal motion, hu2i, above a
linear, low-temperature regime [1–3]. This transition has
been correlated with the onset of protein function [4–6]
and remains the focus of much attention [7–17]. Recent
work has emphasized that the dynamical transition is
solvent controlled [7,8,11,16,18,19].

A consensus has yet to be reached concerning the
forms and time scales of the protein motions activated
at the dynamical transition in these structurally com-
plex systems. The protein transition resembles that ob-
served in glass-forming liquids, involving a critical
slowing down of diffusive motion approaching from
the high-temperature side [20,21]. A related interpreta-
tion uses the ‘‘conformational substates’’ model, in which
proteins are frozen in multiple substates at low tempera-
tures, leading to structural inhomogeneity, whereas above
the transition substate interconversion is possible [17,22].
Neutron scattering data on the dynamical transition has
been interpreted using an asymmetric double-well model
[3], mode-coupling theory [23], and in terms of a ‘‘resil-
ience’’ change with temperature-dependent effective
force constants [24].

Here we use molecular dynamics (MD) simulation to
determine the subnanosecond dynamical modes of hy-
drated myoglobin as a function of temperature. To do this,
principal component analysis (PCA) is employed to char-
acterize the MD trajectories. It is found that the dynamics
activated at the transition can be described with a very
small number of components, pointing to an underlying
simplicity in the processes involved. The modes activated
are found to be collective, and distributed over the protein
molecule.

The MD simulations were performed using the
0031-9007=03=91(20)=208106(4)$20.00 
model system consists of one myoglobin molecule sur-
rounded by a shell of water molecules, and has the same
composition as the sample used in neutron scattering
experiments performed on myoglobin in which the dy-
namical transition on the subnanosecond time scale was
first demonstrated [3]. The system was simulated at a
range of temperatures between 80 and 300 K and thermo-
statted using the Nosé-Hoover-Chains algorithm [26].
The production phase of each simulation was 1 ns long.

PCA is a convenient method for representing the con-
formational space explored in an MD trajectory [27,28].
PCA determines the essential motions present in the
simulation: the principal component modes. The set of
principal components is the solution to the eigenvalue
problem of the second-moment matrix, A, of the mass-
weighted internal atomic displacements. The elements of
the second-moment matrix, Aij, are given by Aij ������������mimj
p

� h�ri�t� 	 rmi ��rj�t� 	 rmj �i where ri is the posi-
tion, rmi the mean position, and mi the mass of atom i, and
the average is taken over the time frames of the trajectory.
The diagonalization of A yields the eigenvectors, wk, i.e.,
the principal components, and their associated eigenval-
ues, �k. �k is the mass-weighted mean-square fluctuation
along wk, and can be used to calculate the atom-averaged
mass-weighted atomic fluctuation in the protein. For
comparison with the principal component results, normal
modes were calculated from the energy-minimized con-
formation of the model system using the harmonic ap-
proximation to the potential function. In a normal mode
analysis, the Hessian matrix is diagonalized, yielding
the normal modes, wNM

k , with their corresponding angu-
lar frequencies, !NM

k . In what follows, the principal
component mode numbering ascends with the effective
frequency, !k (where !2

k � kBT=�k), i.e., with the lowest-
frequency mode labeled number 1.

The anharmonicity factor, �k, is a measure of the
deviation of mode k from harmonicity [28]. To determine
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ckl � �wk 
 wNM
l �2. The harmonic variance along the kth

principal component mode �Hk , is then given by �Hk �P
lckl�

NM
l , and the anharmonicity factor is defined as

�k �
�������������
�k=�Hk

q
. � is a number greater than 1. Modes with

� close to 1 are considered harmonic.
Figure 1 shows � calculated for the first 30 princi-

pal component modes. There is no abrupt, qualitative
change in the anharmonicity of the principal compo-
nents at the onset of the transition (�180–210 K).
Rather, the temperature dependence of the anharmonicity
is highly mode dependent. As a guide to the eye, for
each mode the temperature at which � � 2 is shown
with a bar. Using this criterion, the lowest two modes
are anharmonic at temperatures as low as 80 K but no
other principal components reach � � 2 below 190 K. At
higher temperatures a few other low modes successively
become anharmonic. However, at 300 K still only 20 of
the 6536 components have reached � � 2.

The trajectory, qk�t�, of a principal mode wk is given by
the projection of the MD trajectory onto the kth principal
component: qk�t� � �r�t� 	 rm� 
 wk, where r�t� is the pro-
tein position vector in conformational space at time t and
rm the mean position vector. Useful complementary in-
formation on the anharmonicity is given by Pk�qk�, the
probability distribution along mode k [28]. For harmonic
motion Pk�qk� is Gaussian with variance �k. The standard
error, �k, of a Gaussian fit to Pk�qk� is therefore zero for
harmonic modes. � is low for modes with temperature-
dependent effective force constants but with close-to-
quadratic effective potentials (‘‘quasiharmonic’’ modes).
� is higher for multiminimum free-energy profiles.

Figure 2 shows � for the lowest 15 modes. The tem-
perature at which � � 1 is indicated with a black bar.
Here again very few principal components become non-
Gaussian in the temperature range examined. Significant
FIG. 1. Anharmonicity factor, �, for the first 20 principal
component modes. For each principal component the tempera-
ture at which � � 2 is reached is indicated with a black bar.
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deviation is seen in modes 1 and 2 at low temperatures;
these two modes reach � � 1 at 140 and 170 K, respec-
tively. Only five further modes reach � � 1 by T �
300 K, all other modes being close to Gaussian at all
temperatures examined.

The above analysis allows the classification of the
principal components into three types:

(i) Harmonic modes are those which exhibit approxi-
mately Gaussian probability distributions (defined here as
�< 1) and for which the anharmonicity is low (� � 2).

(ii) Quasiharmonic modes exhibit approximately
Gaussian probability distributions (�< 1) but possess
considerable anharmonicity (� > 2).

(iii) Multiminimum modes cannot be well fitted by a
Gaussian (� > 1) and are also anharmonic (� > 2).

The contributions made to the mean-square displace-
ment, hu2i, by these three types of principal components
are shown in Fig. 3. The increase in hu2i signaling the
incipient phase of the transition (~180–210 K) is seen to
arise from a very small number of principal components.
By 210 K, only four PCA modes are not harmonic: three
of these are multiminimum and one quasiharmonic. At
210 K, 75% of the increase over the linear hu2i (the
‘‘excess’’ hu2i) is due to multiminimum dynamics. As
the temperature increases more multiminimum and qua-
siharmonic components appear. However, at 300 K still
only 20 modes deviate from harmonic behavior, i.e., only
0.3% of the total number of modes in the protein. 70% of
the excess hu2i at 300 K arises from seven multiminimum
modes, with the remaining 30% originating from 13
quasiharmonic principal components.

In contrast to harmonic normal modes, the forms of the
individual principal components vary with temperature.
FIG. 2. Standard deviation, �, of the Gaussian fit to the
probability distribution of the first 20 principal component
modes. For each principal component the temperature is in-
dicated at which � � 1 is reached. The error was defined as
�2 � 1000 �P�q� 	 G�q�
2, taken over 3 standard deviations of
the probability distribution, where G�q� is the Gaussian fit.
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FIG. 3. Decomposition of the mass-weighted protein, hu2i,
into contributions arising from the harmonic, quasiharmonic,
or multiminimum classes of principal component. Vertical
arrows indicate the number of multiminimum modes, and
italics the number of quasiharmonic modes at certain tempera-
tures. The hu2i calculated at 300 K from the normal mode
analysis using the same model system and potential function is
indicated, the value of this concurs with that calculated from
the ‘‘harmonic’’ principal component modes.
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Therefore, to further characterize the dynamics associ-
ated with the onset of the transition at �180–210 K it is
necessary to examine the principal components con-
cerned at the temperatures involved. The effective free
energy along the kth mode is �k�qk� � 	kBT lnPk�qk�. In
Fig. 4 are plotted �k�qk� of modes 1, 2, and 5. For mode 1
the profile is approximately quadratic below 180 K. The
onset of the dynamical transition is characterized by the
appearance at 180 K in mode 1 of double-well behavior
a b

FIG. 4. Free energy profiles of (a) the 1st-, (b) the 2nd

208106-3
with a free-energy barrier of �kBT. This behavior is
consistent with the idea that the glass transition originates
in strong anharmonicity in low-frequency modes (‘‘bo-
sons’’) which permits the system to access multiple min-
ima of its configuration space [20]. Above �240 K the
mode 1 profile is highly rugged. Mode 2 is approximately
harmonic for T � 200 K, above which multiple minima
again appear. Mode 5 is an example of a mode that is
harmonic at low temperatures (here T < 200 K) and be-
comes quasiharmonic above.

Graphical examination of modes 1–5 over the tempera-
ture range 180–300 K shows that these principal compo-
nents all involve collective dynamics distributed over
most of the myoglobin molecule. In mode 1 the transition
between the free-energy minima at 180 K comprises the
relative motion of two large rigid-body blocks of ~900
atoms. One of these blocks contains helices A, H, and F
and the other B, C, D, and G. The relative motion involves
helices G and H rotating in opposite directions around the
axis of the stationary helix E.

Figures 5(a) and 5(b) illustrate the myoglobin struc-
tures in the two free-energy minima of mode 1. Rigid-
body helix translations and rotations are apparent.
Because of rotations around the helix axes the side-chain
displacements are generally larger than those of the
main-chain atoms, as illustrated by ASP126 on helix H
in Fig. 5(a).

Previous work has shown that solvent is the driving
force for important internal protein motions [8,29].
The protein dynamical transition is accompanied by a
qualitative change in the hydration water shell dynamics
[15] involving activation of protein motions by transla-
tional water diffusion [7,19]. Hydration water interacts
c

-, and (c) the 5th-lowest principal component modes.
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FIG. 5. (a),(b) Motion of myoglobin along the first principal
mode calculated at 200 K. The structures of myoglobin are
shown in the two minima (black and white) of the mode. The
helices are represented as cylinders. For ease of viewing the
amplitude of the motion is multiplied by a factor of 6. (a) also
shows the sidechain of ASP126.
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principally with the surface atoms, which correspond-
ingly have been shown to exhibit the largest change in
hu2i at the dynamical transition [9,19]. The present
simulation analysis has provided a description of the
subnanosecond protein dynamics activated at the transi-
tion. The results indicate that the solvent:surface interac-
tion propagates to the interior of the protein via collective
dynamics that can be described by a very small number of
principal components. By 210 K only two quasiharmonic
modes and two multiminimum modes deviate substan-
tially from harmonic behavior.

The modes initiating the transition are global and
distributed over the protein. The quasiharmonic compo-
nents correspond to softened effective harmonic motion.
The largest displacements, however, arise from the acti-
vation of barrier-crossing, multiminimum components.
In the mode with the largest contribution to the onset of
the transition in the present system the barrier crossing
involves blocks of supersecondary structural elements
moving relative to each other. This rigid-body motion
qualitatively resembles structural changes seen in pro-
teins in different functional states [30]. However, it is
unclear to what extent motions activated in the dynamical
transition describe functional protein dynamics.

As computer power improves it will be of interest to
perform a similar analysis on longer time scales, so as
to examine the time scale dependence [31] and the hier-
archical substate structure [22,28] of the low-frequency
principal coordinates. It is hoped that the underlying
simplicity revealed here in the subnanosecond motions
associated with the dynamical transition will facilitate
future studies of the relationship between protein energy
landscapes and function.
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